Quasilinear Evolution Equations in [L.sup.P.sub.[mu]]-Spaces with Lower Regular Initial Data
We study the Cauchy problem of the quasilinear evolution equations in [L.sup.P.sub.[mu]]-spaces. Based on the theories of maximal [L.sup.p]-regularity of sectorial operators, interpolation spaces, and time-weighted [L.sup.p]-spaces, we establish the local posedness for a class of abstract quasilinea...
Gespeichert in:
Veröffentlicht in: | Journal of function spaces 2018-01, Vol.2018 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the Cauchy problem of the quasilinear evolution equations in [L.sup.P.sub.[mu]]-spaces. Based on the theories of maximal [L.sup.p]-regularity of sectorial operators, interpolation spaces, and time-weighted [L.sup.p]-spaces, we establish the local posedness for a class of abstract quasilinear evolution equations with lower regular initial data. To illustrate our results, we also deal with the second-order parabolic equations and the Navier-Stokes equations in [L.sup.p,q]-spaces with temporal weights. |
---|---|
ISSN: | 2314-8896 |
DOI: | 10.1155/2018/2569080 |