miRNA-21 promotes osteogenesis via the PTEN/PI3K/Akt/HIF-1[alpha] pathway and enhances bone regeneration in critical size defects
Background Functional reconstruction of maxillofacial bone defects is a considerable clinical challenge. Many studies have emphasized the osteogenic and angiopoietic abilities of stem cells for tissue regeneration. We previously showed that microRNA-21 (miRNA-21) can promote angiogenesis in human um...
Gespeichert in:
Veröffentlicht in: | Stem cell research & therapy 2019-02, Vol.10 (1) |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background Functional reconstruction of maxillofacial bone defects is a considerable clinical challenge. Many studies have emphasized the osteogenic and angiopoietic abilities of stem cells for tissue regeneration. We previously showed that microRNA-21 (miRNA-21) can promote angiogenesis in human umbilical cord blood-derived mesenchymal stem cells (UCBMSCs). In the present study, the role of miRNA-21 in osteogenic differentiation of bone marrow-derived stem cells (BMSCs) was investigated. Methods Western blotting and qPCR were performed to investigate the influences of miRNA-21 on osteogenic differentiation of BMSCs. The effects of miRNA-21 on PTEN/PI3K/Akt/HIF-1[alpha] pathway were also assessed using western blotting. To further evaluate the roles of miRNA-21 in osteogenesis in vivo, we conducted animal experiments in rat and canine. New bone formation was assessed using micro-CT and histological methods. Results In the present study, we found that miRNA-21 promotes the migration and osteogenic differentiation of bone marrow-derived stem cells (BMSCs) in vitro. Using gain- and loss-of-function studies, we found that miRNA-21 promoted the osteogenic ability of BMSCs by increasing P-Akt and HIF-1[alpha] activation. Finally, we verified the essential role of miRNA-21 in osteogenesis by implanting a miRNA-21-modified BMSCs/[beta]-tricalcium phosphate ([beta]-TCP) composite into critical size defects. Radiography, micro-CT, and histology revealed significantly greater volume of new bone formation in the miRNA-21 group than in the control group. Conclusion In conclusion, our study demonstrated an essential role of miRNA-21 in promoting maxillofacial bone regeneration via the PTEN/PI3K/Akt/HIF-1[alpha] pathway. Keywords: miRNA-21, BMSCs, PTEN/PI3K/Akt, Bone regeneration, Bone defects |
---|---|
ISSN: | 1757-6512 1757-6512 |
DOI: | 10.1186/s13287-019-1168-2 |