Non-Weakly Supercyclic Classes of Weighted Composition Operators on Banach Spaces of Analytic Functions
We present a non-weak supercyclicity criterion for vectors in infinite dimensional Banach spaces. Also, we give sufficient conditions under which a class of weighted composition operators on a Banach space of analytic functions is not weakly supercyclic. In particular, we show that the semigroup of...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Belgian Mathematical Society, Simon Stevin Simon Stevin, 2017-04, Vol.24 (2), p.227 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a non-weak supercyclicity criterion for vectors in infinite dimensional Banach spaces. Also, we give sufficient conditions under which a class of weighted composition operators on a Banach space of analytic functions is not weakly supercyclic. In particular, we show that the semigroup of linear isometries on the spaces [S.sup.p] (p > 1), is not weakly supercyclic. Moreover, we observe that every composition operator on some Banach space of analytic functions such as the disc algebra or the analytic Lipschitz space is not weakly supercyclic. |
---|---|
ISSN: | 1370-1444 |
DOI: | 10.36045/bbms/1503453707 |