On Galois group of factorized covers of curves
Let $\mathcal{Y}\xrightarrow {{\psi}} \mathcal{X} \xrightarrow {\varphi} \mathbb{P}^{1}$ be a sequence of covers of compact Riemann surfaces. In this work we study and completely characterize the Galois group $\mathfrak{G}(\varphi\circ\psi)$ of $\varphi\circ\psi$ under the following properties: $\va...
Gespeichert in:
Veröffentlicht in: | Revista matemática iberoamericana 2018-01, Vol.34 (4), p.1853-1866 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $\mathcal{Y}\xrightarrow {{\psi}} \mathcal{X} \xrightarrow {\varphi} \mathbb{P}^{1}$ be a sequence of covers of compact Riemann surfaces. In this work we study and completely characterize the Galois group $\mathfrak{G}(\varphi\circ\psi)$ of $\varphi\circ\psi$ under the following properties: $\varphi$ is a simple cover of degree $m$ and $\psi$ is a Galois unramified cover of degree $n$ with abelian Galois group of type $(n_1,n_2,\dots,n_s)$. We prove that $ \mathfrak{G}(\varphi\circ\psi) \cong ({\mathbb Z}_{n_1} \times {\mathbb Z}_{n_2} \times \cdots \times {\mathbb Z}_{n_s})^{m-1} \rtimes {\bf S}_m$. Furthermore, we give a natural geometric generator system of $\mathfrak{G}(\varphi\circ\psi)$ obtained by studying the action on the compact Riemann surface $\mathcal{Z}$ associated to the Galois closure of $\varphi\circ\psi.$ |
---|---|
ISSN: | 0213-2230 2235-0616 |
DOI: | 10.4171/rmi/1046 |