The effect of two novel cholesterol-lowering agents, disodium ascorbyl phytostanol phosphate on the expression and activity of P-glycoprotein within Caco-2 cells

Background Many drugs are substrates for P-glycoprotein (P-gp) and interactions involving P-gp may be relevant to clinical practice. Co-administration with P-gp inhibitors or inducers changes the absorption profile as well as the risk for drug toxicity, therefore it is important to evaluate possible...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lipids in health and disease 2014-10, Vol.13
Hauptverfasser: Sachs-Barrable, Kristina, Darlington, Jerald W, Wasan, Kishor M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Many drugs are substrates for P-glycoprotein (P-gp) and interactions involving P-gp may be relevant to clinical practice. Co-administration with P-gp inhibitors or inducers changes the absorption profile as well as the risk for drug toxicity, therefore it is important to evaluate possible P-gp alterations. The purpose of this study was to investigate the effect of two novel cholesterol-lowering agents, disodium ascorbyl phytostanol phosphate (DAPP) and nanostructured aluminium silicate (NSAS), a protonated montmorillonite clay, on mdr-1 gene expression and its protein, P-glycoprotein (P-gp) within Caco-2 cells. Methods The effects of DAPP and NSAS on the regulation of mdr-1 gene, P-gp protein expression and activity within Caco-2 cells, were determined using cell viability and cytotoxicity tests, RT-PCR, Western Blot analysis and bi-directional transport studies. Results We observed a significant down-regulation of mdr-1 mRNA (e.g. 38.5 [+ or -] 17% decrease vs. control at 5 [mu]M DAPP and 61.2 [+ or -] 25% versus control at 10 [mu]M DAPP; n = 6, P* < 0.05) within Caco-2 cells. Western Blot analysis of P-gp expression showed that changes in mdr-1 gene expression lead to correlating changes in P-gp protein expression. This down-regulation of P-glycoprotein also resulted in decreased activity of P-glycoprotein compared to untreated control. In contrast, when Caco-2 cells were treated with NSAS, no changes in mdr-1 gene expression, P-gp protein expression nor P-gp activity were observed. Conclusions DAPP but not NSAS decreases P-gp mediated drug efflux through decreased mdr-1 gene expression and consequently decreased P-gp protein expression. These findings have to be taken into consideration when DAPP is concurrently given with other drugs that are substrates for P-gp since drug-drug interactions harbour a safety issue and alter bioavailability profiles. NSAS does not have any P-gp altering properties and therefore might not affect drug-drug interactions. We conclude from this study that NSAS might make a safer drug candidate compared to DAPP for lowering LDL-cholesterol.
ISSN:1476-511X
1476-511X
DOI:10.1186/1476-511X-13-153