A New Unbiased Stochastic Derivative Estimator for Discontinuous Sample Performances with Structural Parameters

In this paper, we propose a new unbiased stochastic derivative estimator in a framework that can handle discontinuous sample performances with structural parameters. This work extends the three most popular unbiased stochastic derivative estimators: (1) infinitesimal perturbation analysis (IPA), (2)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations research 2018-03, Vol.66 (2), p.487-499
Hauptverfasser: Peng, Yijie, Fu, Michael C., Hu, Jian-Qiang, Heidergott, Bernd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a new unbiased stochastic derivative estimator in a framework that can handle discontinuous sample performances with structural parameters. This work extends the three most popular unbiased stochastic derivative estimators: (1) infinitesimal perturbation analysis (IPA), (2) the likelihood ratio (LR) method, and (3) the weak derivative method, to a setting where they did not previously apply. Examples in probability constraints, control charts, and financial derivatives demonstrate the broad applicability of the proposed framework. The new estimator preserves the single-run efficiency of the classic IPA-LR estimators in applications, which is substantiated by numerical experiments. The online appendix is available at https://doi.org/10.1287/opre.2017.1674 .
ISSN:0030-364X
1526-5463
DOI:10.1287/opre.2017.1674