Tangent measures and absolute continuity of harmonic measure

We show that for uniform domains $\Omega\subseteq \mathbb R^{d+1}$ whose boundaries satisfy a certain nondegeneracy condition that harmonic measure cannot be mutually absolutely continuous with respect to $\alpha$-dimensional Hausdorff measure unless $\alpha\leq d$. We employ a lemma that shows that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista matemática iberoamericana 2018-01, Vol.34 (1), p.305-330
Hauptverfasser: Azzam, Jonas, Mourgoglou, Mihalis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that for uniform domains $\Omega\subseteq \mathbb R^{d+1}$ whose boundaries satisfy a certain nondegeneracy condition that harmonic measure cannot be mutually absolutely continuous with respect to $\alpha$-dimensional Hausdorff measure unless $\alpha\leq d$. We employ a lemma that shows that, at almost every non-degenerate point, we may find a tangent measure of harmonic measure whose support is the boundary of yet another uniform domain whose harmonic measure resembles the tangent measure.
ISSN:0213-2230
2235-0616
DOI:10.4171/RMI/986