Tangent measures and absolute continuity of harmonic measure
We show that for uniform domains $\Omega\subseteq \mathbb R^{d+1}$ whose boundaries satisfy a certain nondegeneracy condition that harmonic measure cannot be mutually absolutely continuous with respect to $\alpha$-dimensional Hausdorff measure unless $\alpha\leq d$. We employ a lemma that shows that...
Gespeichert in:
Veröffentlicht in: | Revista matemática iberoamericana 2018-01, Vol.34 (1), p.305-330 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that for uniform domains $\Omega\subseteq \mathbb R^{d+1}$ whose boundaries satisfy a certain nondegeneracy condition that harmonic measure cannot be mutually absolutely continuous with respect to $\alpha$-dimensional Hausdorff measure unless $\alpha\leq d$. We employ a lemma that shows that, at almost every non-degenerate point, we may find a tangent measure of harmonic measure whose support is the boundary of yet another uniform domain whose harmonic measure resembles the tangent measure. |
---|---|
ISSN: | 0213-2230 2235-0616 |
DOI: | 10.4171/RMI/986 |