Estimation of Daily Soil Temperature Via Data Mining Techniques in Semi-Arid Climate Conditions/Estimacion de la Temperatura Diaria del Suelo a Traves de Tecnicas de Busqueda y Procesamiento de Datos en Condiciones Climaticas Semiaridas

This paper investigates the potential of data mining techniques to predict daily soil temperatures at 5-100 cm depths for agricultural purposes. Climatic and soil temperature data from Isfahan province located in central Iran with a semi-arid climate was used for the modeling process. A subtractive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth sciences research journal 2017-06, Vol.21 (2), p.85
Hauptverfasser: Sattari, M. Taghi, Dodangeh, Esmaeel, Abraham, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper investigates the potential of data mining techniques to predict daily soil temperatures at 5-100 cm depths for agricultural purposes. Climatic and soil temperature data from Isfahan province located in central Iran with a semi-arid climate was used for the modeling process. A subtractive clustering approach was used to identify the structure of the Adaptive Neuro-Fuzzy Inference System (ANFIS), and the result of the proposed approach was compared with artificial neural networks (ANNs) and an M5 tree model. Result suggests an improved performance using the ANFIS approach in predicting soil temperatures at various soil depths except at 100 cm. The performance of the ANNs and M5 tree models were found to be similar. However, the M5 tree model provides a simple linear relation to predicting the soil temperature for the data ranges used in this study. Error analyses of the predicted values at various depths show that the estimation error tends to increase with the depth. Keywords: Soil temperature; Data mining; M5 tree model; ANFIS; ANN. RESUMEN Este artículo investiga el potencial de las técnicas de búsqueda y procesamiento de datos para pronosticar las temperaturas diarias del suelo a profundidades que van de los 5 a los 100 cm con propósitos agrícolas. Se utilizó la información climática y de temperatura del suelo de la provincia Ishafan, ubicada en el centro de Irán y de clima semiárido, para el proceso de modelamiento. Se usó un enfoque de agrupamiento sustractivo para identificar la estructura del Sistema de Inferencia Neuronal Difuso Adaptado (ANFIS, del inglés Adaptive Neuro-Fuzzy Inference System) y el resultado del acercamiento propuesto se comparó con redes artificiales neuronales (ANN) y el modelo tipo árbol M5. Los resultados sugieren un desempeño mejorado al usar el enfoque ANFIS en la predicción de las temperaturas del suelo en varios puntos de profundidad, excepto en los 100 cm. El desempeño de las redes artificiales neuronales y los modelos de árbol M5 fueron similares. Sin embargo, el modelo tipo árbol M5 provee una relación linear simple para predecir los rangos de datos de la temperatura del suelo utilizados en este estudio. Los análisis de error de los valores predichos a varias profundidades muestran que la estimación de error tiende a incrementarse con la profundidad. Palabras clave: Temperatura del suelo; minería de datos; modelo tipo árbol M5; ANFIS; ANN
ISSN:1794-6190
DOI:10.15446/esrj.v21n2.49829