Higher order rectifiability of measures via averaged discrete curvatures
We provide a sufficient geometric condition for $\mathbb R^n$ to be countably $(\mu,m)$ rectifiable of class $\mathcal C^{1,\alpha}$ (using the terminology of Federer), where $\mu$ is a Radon measure having positive lower density and finite upper density $\mu$ almost everywhere. Our condition involv...
Gespeichert in:
Veröffentlicht in: | Revista matemática iberoamericana 2017-01, Vol.33 (3), p.861-884 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We provide a sufficient geometric condition for $\mathbb R^n$ to be countably $(\mu,m)$ rectifiable of class $\mathcal C^{1,\alpha}$ (using the terminology of Federer), where $\mu$ is a Radon measure having positive lower density and finite upper density $\mu$ almost everywhere. Our condition involves integrals of certain many-point interaction functions (discrete curvatures) which measure flatness of simplexes spanned by the parameters. |
---|---|
ISSN: | 0213-2230 2235-0616 |
DOI: | 10.4171/RMI/958 |