Higher order rectifiability of measures via averaged discrete curvatures

We provide a sufficient geometric condition for $\mathbb R^n$ to be countably $(\mu,m)$ rectifiable of class $\mathcal C^{1,\alpha}$ (using the terminology of Federer), where $\mu$ is a Radon measure having positive lower density and finite upper density $\mu$ almost everywhere. Our condition involv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista matemática iberoamericana 2017-01, Vol.33 (3), p.861-884
1. Verfasser: Kolasinski, Slawomir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide a sufficient geometric condition for $\mathbb R^n$ to be countably $(\mu,m)$ rectifiable of class $\mathcal C^{1,\alpha}$ (using the terminology of Federer), where $\mu$ is a Radon measure having positive lower density and finite upper density $\mu$ almost everywhere. Our condition involves integrals of certain many-point interaction functions (discrete curvatures) which measure flatness of simplexes spanned by the parameters.
ISSN:0213-2230
2235-0616
DOI:10.4171/RMI/958