Stable polynomials over finite fields
We use the theory of resultants to study the stability, that is, the property of having all iterates irreducible, of an arbitrary polynomial $f$ over a finite field $\mathbb{F}_q$. This result partially generalizes the quadratic polynomial case described by R. Jones and N. Boston. Moreover, for $p=3...
Gespeichert in:
Veröffentlicht in: | Revista matemática iberoamericana 2014-01, Vol.30 (2), p.523-535 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We use the theory of resultants to study the stability, that is, the property of having all iterates irreducible, of an arbitrary polynomial $f$ over a finite field $\mathbb{F}_q$. This result partially generalizes the quadratic polynomial case described by R. Jones and N. Boston. Moreover, for $p=3$, we show that certain polynomials of degree three are not stable. We also use the Weil bound for multiplicative character sums to estimate the number of stable polynomials over a finite field of odd characteristic. |
---|---|
ISSN: | 0213-2230 2235-0616 |
DOI: | 10.4171/RMI/791 |