Stable polynomials over finite fields

We use the theory of resultants to study the stability, that is, the property of having all iterates irreducible, of an arbitrary polynomial $f$ over a finite field $\mathbb{F}_q$. This result partially generalizes the quadratic polynomial case described by R. Jones and N. Boston. Moreover, for $p=3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista matemática iberoamericana 2014-01, Vol.30 (2), p.523-535
Hauptverfasser: Gómez-Pérez, Domingo, Nicolás, Alejandro, Ostafe, Alina, Sadornil, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use the theory of resultants to study the stability, that is, the property of having all iterates irreducible, of an arbitrary polynomial $f$ over a finite field $\mathbb{F}_q$. This result partially generalizes the quadratic polynomial case described by R. Jones and N. Boston. Moreover, for $p=3$, we show that certain polynomials of degree three are not stable. We also use the Weil bound for multiplicative character sums to estimate the number of stable polynomials over a finite field of odd characteristic.
ISSN:0213-2230
2235-0616
DOI:10.4171/RMI/791