Quasisymmetric Koebe uniformization

We study a quasisymmetric version of the classical Koebe uniformization theorem in the context of Ahlfors regular metric surfaces. We provide sufficient conditions for an Ahlfors 2-regular metric space $X$ homeomorphic to a domain in the standard 2-sphere $\mathbb{S}^2$ to be quasisymmetrically equi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista matemática iberoamericana 2013-01, Vol.29 (3), p.859-910
Hauptverfasser: Merenkov, Sergei, Wildrick, Kevin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a quasisymmetric version of the classical Koebe uniformization theorem in the context of Ahlfors regular metric surfaces. We provide sufficient conditions for an Ahlfors 2-regular metric space $X$ homeomorphic to a domain in the standard 2-sphere $\mathbb{S}^2$ to be quasisymmetrically equivalent to a circle domain in $\mathbb{S}^2$. We also give an example showing the sharpness of these conditions.
ISSN:0213-2230
2235-0616
DOI:10.4171/RMI/743