On the regularity of the free boundary for quasilinear obstacle problems

We extend basic regularity of the free boundary of the obstacle problem to some classes of heterogeneous quasilinear elliptic operators with variable growth that includes, in particular, the $p(x)$-Laplacian. Under the assumption of Lipschitz continuity of the order of the power growth $p(x)>1$,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Interfaces and free boundaries 2014-01, Vol.16 (3), p.359-394
Hauptverfasser: Challal, Samia, Lyaghfouri, Abdeslem, Rodrigues, José Francisco, Teymurazyan, Rafayel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We extend basic regularity of the free boundary of the obstacle problem to some classes of heterogeneous quasilinear elliptic operators with variable growth that includes, in particular, the $p(x)$-Laplacian. Under the assumption of Lipschitz continuity of the order of the power growth $p(x)>1$, we use the growth rate of the solution near the free boundary to obtain its porosity, which implies that the free boundary is of Lebesgue measure zero for $p(x)$-Laplacian type heterogeneous obstacle problems. Under additional assumptions on the operator heterogeneities and on data we show, in two different cases, that up to a negligible singular set of null perimeter the free boundary is the union of at most a countable family of $C^1$ hypersurfaces: i) by extending directly the finiteness of the $(n-1)$-dimensional Hausdorff measure of the free boundary to the case of heterogeneous $p$-Laplacian type operators with constant $p, 1 < p 1$.
ISSN:1463-9963
1463-9971
DOI:10.4171/IFB/323