Remark on the holder continuity of p-harmonic functions

We consider a p(x) -harmonic equation, where p(x) is measurable in [OMEGA] and is separated, from 1 and infinity. It is shown that if p(x) is a radial function of x - [x.sub.0], in a neighborhood of a point [x.sub.0] [member of] [OMEGA] i.e., p(x) = p([absolute value of (x - [x.sub.0])]) and p(t) is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2016-07, Vol.216 (2), p.147
Hauptverfasser: Alkhutov, Yu.A, Krasheninnikova, O.V
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 147
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 216
creator Alkhutov, Yu.A
Krasheninnikova, O.V
description We consider a p(x) -harmonic equation, where p(x) is measurable in [OMEGA] and is separated, from 1 and infinity. It is shown that if p(x) is a radial function of x - [x.sub.0], in a neighborhood of a point [x.sub.0] [member of] [OMEGA] i.e., p(x) = p([absolute value of (x - [x.sub.0])]) and p(t) is nonincreasing on (0, d), then p(x) is Holder continuous at the point [x.sub.0]. Bibliography: 11 titles.
doi_str_mv 10.1007/s10958-016-2893-z
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A501717884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A501717884</galeid><sourcerecordid>A501717884</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1394-857b2e6dbe2ef1c165777568ae83c23b32824a4b0e00cdcc6150afa55f9fb3eb3</originalsourceid><addsrcrecordid>eNptkE1LxDAQhoMouK7-AG8BTx6y5qNp0uOy-LGwIKx6Lmk6aaNtIk0X1F9vRQ8uLHOYl-F53sMgdMnoglGqbhKjhdSEspxwXQjydYRmTCpBtCrk8ZSp4kQIlZ2is5Re6eTkWsyQ2kJvhjccAx5bwG3sahiwjWH0YefHTxwdfietGfoYvMVuF-zoY0jn6MSZLsHF356jl7vb59UD2Tzer1fLDWmYKDKipao45HUFHByzLJdKKZlrA1pYLirBNc9MVlGg1NbW5kxS44yUrnCVgErM0dVvb2M6KH1wcRyM7X2y5VJSppjSOpsocoBqIMBguhjA-em8xy8O8NPU0Ht7ULjeE34eBB9jY3Ypleun7X_2GwSqdZc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Remark on the holder continuity of p-harmonic functions</title><source>SpringerNature Complete Journals</source><creator>Alkhutov, Yu.A ; Krasheninnikova, O.V</creator><creatorcontrib>Alkhutov, Yu.A ; Krasheninnikova, O.V</creatorcontrib><description>We consider a p(x) -harmonic equation, where p(x) is measurable in [OMEGA] and is separated, from 1 and infinity. It is shown that if p(x) is a radial function of x - [x.sub.0], in a neighborhood of a point [x.sub.0] [member of] [OMEGA] i.e., p(x) = p([absolute value of (x - [x.sub.0])]) and p(t) is nonincreasing on (0, d), then p(x) is Holder continuous at the point [x.sub.0]. Bibliography: 11 titles.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-016-2893-z</identifier><language>eng</language><publisher>Springer</publisher><ispartof>Journal of mathematical sciences (New York, N.Y.), 2016-07, Vol.216 (2), p.147</ispartof><rights>COPYRIGHT 2016 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Alkhutov, Yu.A</creatorcontrib><creatorcontrib>Krasheninnikova, O.V</creatorcontrib><title>Remark on the holder continuity of p-harmonic functions</title><title>Journal of mathematical sciences (New York, N.Y.)</title><description>We consider a p(x) -harmonic equation, where p(x) is measurable in [OMEGA] and is separated, from 1 and infinity. It is shown that if p(x) is a radial function of x - [x.sub.0], in a neighborhood of a point [x.sub.0] [member of] [OMEGA] i.e., p(x) = p([absolute value of (x - [x.sub.0])]) and p(t) is nonincreasing on (0, d), then p(x) is Holder continuous at the point [x.sub.0]. Bibliography: 11 titles.</description><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNptkE1LxDAQhoMouK7-AG8BTx6y5qNp0uOy-LGwIKx6Lmk6aaNtIk0X1F9vRQ8uLHOYl-F53sMgdMnoglGqbhKjhdSEspxwXQjydYRmTCpBtCrk8ZSp4kQIlZ2is5Re6eTkWsyQ2kJvhjccAx5bwG3sahiwjWH0YefHTxwdfietGfoYvMVuF-zoY0jn6MSZLsHF356jl7vb59UD2Tzer1fLDWmYKDKipao45HUFHByzLJdKKZlrA1pYLirBNc9MVlGg1NbW5kxS44yUrnCVgErM0dVvb2M6KH1wcRyM7X2y5VJSppjSOpsocoBqIMBguhjA-em8xy8O8NPU0Ht7ULjeE34eBB9jY3Ypleun7X_2GwSqdZc</recordid><startdate>20160702</startdate><enddate>20160702</enddate><creator>Alkhutov, Yu.A</creator><creator>Krasheninnikova, O.V</creator><general>Springer</general><scope>ISR</scope></search><sort><creationdate>20160702</creationdate><title>Remark on the holder continuity of p-harmonic functions</title><author>Alkhutov, Yu.A ; Krasheninnikova, O.V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1394-857b2e6dbe2ef1c165777568ae83c23b32824a4b0e00cdcc6150afa55f9fb3eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alkhutov, Yu.A</creatorcontrib><creatorcontrib>Krasheninnikova, O.V</creatorcontrib><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alkhutov, Yu.A</au><au>Krasheninnikova, O.V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remark on the holder continuity of p-harmonic functions</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><date>2016-07-02</date><risdate>2016</risdate><volume>216</volume><issue>2</issue><spage>147</spage><pages>147-</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We consider a p(x) -harmonic equation, where p(x) is measurable in [OMEGA] and is separated, from 1 and infinity. It is shown that if p(x) is a radial function of x - [x.sub.0], in a neighborhood of a point [x.sub.0] [member of] [OMEGA] i.e., p(x) = p([absolute value of (x - [x.sub.0])]) and p(t) is nonincreasing on (0, d), then p(x) is Holder continuous at the point [x.sub.0]. Bibliography: 11 titles.</abstract><pub>Springer</pub><doi>10.1007/s10958-016-2893-z</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2016-07, Vol.216 (2), p.147
issn 1072-3374
1573-8795
language eng
recordid cdi_gale_infotracmisc_A501717884
source SpringerNature Complete Journals
title Remark on the holder continuity of p-harmonic functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A53%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remark%20on%20the%20holder%20continuity%20of%20p-harmonic%20functions&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Alkhutov,%20Yu.A&rft.date=2016-07-02&rft.volume=216&rft.issue=2&rft.spage=147&rft.pages=147-&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-016-2893-z&rft_dat=%3Cgale%3EA501717884%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A501717884&rfr_iscdi=true