Remark on the holder continuity of p-harmonic functions
We consider a p(x) -harmonic equation, where p(x) is measurable in [OMEGA] and is separated, from 1 and infinity. It is shown that if p(x) is a radial function of x - [x.sub.0], in a neighborhood of a point [x.sub.0] [member of] [OMEGA] i.e., p(x) = p([absolute value of (x - [x.sub.0])]) and p(t) is...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2016-07, Vol.216 (2), p.147 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a p(x) -harmonic equation, where p(x) is measurable in [OMEGA] and is separated, from 1 and infinity. It is shown that if p(x) is a radial function of x - [x.sub.0], in a neighborhood of a point [x.sub.0] [member of] [OMEGA] i.e., p(x) = p([absolute value of (x - [x.sub.0])]) and p(t) is nonincreasing on (0, d), then p(x) is Holder continuous at the point [x.sub.0]. Bibliography: 11 titles. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-016-2893-z |