Q-learning algorithm performance for m-machine, n-jobs flow shop scheduling problems to minimize makespan

Flow Shop Scheduling Problems circumscribes an important class of sequencing problems in the field of production planning. The problem considered here is to find a permutation of jobs to be sequentially processed on a number of machines under the restriction that the processing of each job has to be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Investigación operacional 2017-09, Vol.38 (3), p.281
Hauptverfasser: Fonseca-Reyna, Yunior Cesar, Ma, Nowe, Ann
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Flow Shop Scheduling Problems circumscribes an important class of sequencing problems in the field of production planning. The problem considered here is to find a permutation of jobs to be sequentially processed on a number of machines under the restriction that the processing of each job has to be continuous with respect to the objective of minimizing the completion time of all jobs, known in literature as makespan or [C.sub.max]. This problem is as NP-hard, it is typical of combinatorial optimization and can be found in manufacturing environments, where there are conventional machines-tools and different types of pieces which share the same route. The following research presents a Reinforcement Learning algorithm known as Q-Learning to solve problems of the Flow Shop category. This algorithm is based on learning an action-value function that gives the expected utility of taking a given action in a given state where an agent is associated to each of the resources. To validate the quality of the solutions, test cases of the specialized literature are used and the results obtained are compared with the reported optimal results. KEYWORDS: Flow-shop, makespan; optimization; scheduling, q-learning. MSC: 68T20, 68T05, 90C59 RESUMEN El problema de secuenciamiento de tareas es un problema clasico de la programacion de trabajos que puede presentarse en diferentes situaciones reales. La solucion de este problema consiste en encontrar una secuencia de tareas que emplee un tiempo minimo de procesamiento (makespan). El mismo esta incluido dentro de la gran variedad de problemas de planificacion de recursos, el cual como muchos otros en este campo, es de dificil solucion y esta clasificado tecnicamente como de solucion en un tiempo no polinomial (NP-hard). Este problema es tipico de la optimizacion combinatoria y se presenta en talleres con tecnologia de maquinado donde existen maquinas-herramientas convencionales y se fabrican diferentes tipos de piezas que pueden, en dependencia del escenario, presentar una misma ruta o no. En esta investigacion se presenta el algoritmo Q-Learning del Aprendizaje Reforzado para resolver problemas del tipo Flow Shop. Para validar el rendimiento de este algoritmo se utilizan problemas de la literatura especializada que se encuentran disponibles en la libreria de investigacion de operaciones. Los resultados obtenidos son comparados con los resultados optimos reportados.
ISSN:0257-4306