Application of kronecker algebra in railway operation/Primjena kroneckerove algebre u poslovanju zeljeznice
We present a methodology for dispatching trains which prevents deadlocks and includes possible limitation of the available energy provided by the power supply. Our approach applies Kronecker algebra to manipulate matrices. Generally blocking of trains occurs due to a lack of some resource which can...
Gespeichert in:
Veröffentlicht in: | Tehnički vjesnik 2017-02, Vol.24 (1), p.21 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a methodology for dispatching trains which prevents deadlocks and includes possible limitation of the available energy provided by the power supply. Our approach applies Kronecker algebra to manipulate matrices. Generally blocking of trains occurs due to a lack of some resource which can be either infrastructure or energy. Our method can also be used to calculate travel times in a rough way. Thereby blocking time is included in the calculated travel time. To model the movements of trains in a railway system we use graphs, which are represented by adjacency matrices. We assume that the edges in a graph are labelled by elements of a semiring. Usually two or more distinct train route graphs refer to the same track section to model synchronization. Our approach can be used to model a complex railway system. For example, if additional trains have to be scheduled, power stations or interconnection lines fail or are not available due to maintenance, our model can be used to calculate the impact on the travel times of the trains in the system. |
---|---|
ISSN: | 1330-3651 |
DOI: | 10.17559/TV-20131107130926 |