Oxygen Utilization and Downward Carbon Flux in an Oxygen-Depleted Eddy in the Eastern Tropical North Atlantic

The occurrence of mesoscale eddies that develop an extreme low oxygen environment at shallow depth (about 40 to 100 m) has recently been reported for the eastern tropical North Atlantic (ETNA). Their hydrographic structure suggests that the water mass inside the eddy is well isolated from ambient wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biogeosciences 2016-01, Vol.13 (2), p.1
Hauptverfasser: Fiedler, B, Grundle, D, Schütte, F, Karstensen, J, Löscher, C. R, Hauss, H, Wagner, H, Loginova, A, Kiko, R, Silva, P, Körtzinger, A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The occurrence of mesoscale eddies that develop an extreme low oxygen environment at shallow depth (about 40 to 100 m) has recently been reported for the eastern tropical North Atlantic (ETNA). Their hydrographic structure suggests that the water mass inside the eddy is well isolated from ambient waters supporting the development of severe near-surface oxygen deficits. So far, hydrographic and biogeochemical characterization of these eddies was limited to a few autonomous surveys, using moorings, underwater gliders and profiling floats. In this study we present results from the first dedicated biogeochemical survey of one of these eddies conducted in March 2014 near the Cape Verde Ocean Observatory (CVOO). At the time of the survey the eddy core showed lowest oxygen concentrations of less than 5 μmol kg.sup.−1 and a pH of approx. 7.6 at the lower boundary of the euphotic zone. Correspondingly, the aragonite saturation level dropped to 1 thereby creating unfavorable conditions for calcifying organisms at this shallow depth. To our knowledge, such enhanced acidity within near-surface waters has never been reported before for the open Atlantic Ocean. Vertical distributions of particulate and dissolved organic matter (POM, DOM) generally show elevated concentrations in the surface mixed layer, but particularly DOM also accumulates beneath the oxygen minimum. Considering reference data from the upwelling region where these eddies are formed, we determined the oxygen consumption through remineralization of organic matter and found an enhancement of apparent oxygen utilization rates (aOUR, 0.26 μmol kg.sup.−1 d.sup.−1) by almost one order of magnitude when compared with typical values for the open North Atlantic. Computed downward fluxes for particulate organic carbon (POC) at 100 m were about 0.19 to 0.23 g C m.sup.−2 d.sup.−1 which clearly exceed fluxes typical for an oligotrophic open ocean setting. The observations support the view that the oxygen depleted eddies can be viewed as isolated, westwards propagating upwelling systems as their own.
ISSN:1726-4170
1726-4189