Chebyshev Polynomials, Zolotarev Polynomials, and Plane Trees

A polynomial with exactly two critical values is called a generalized Chebyshev polynomial (or Shabat polynomial). A polynomial with exactly three critical values is called a Zolotarev polynomial. Two Chebyshev polynomials f and g are called Z-homotopic if there exists a family pα , α ϵ [0 , 1], whe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2015-08, Vol.209 (2), p.275-281
1. Verfasser: Kochetkov, Yu. Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A polynomial with exactly two critical values is called a generalized Chebyshev polynomial (or Shabat polynomial). A polynomial with exactly three critical values is called a Zolotarev polynomial. Two Chebyshev polynomials f and g are called Z-homotopic if there exists a family pα , α ϵ [0 , 1], where p 0 = f , p 1 = g , and pα is a Zolotarev polynomial if α ϵ (0 , 1). As each Chebyshev polynomial defines a plane tree (and vice versa), Z-homotopy can be defined for plane trees. In this work, we prove some necessary geometric conditions for the existence of Z-homotopy of plane trees, describe Z-homotopy for trees with five and six edges, and study one interesting example in the class of trees with seven edges.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-015-2502-6