Radial symmetry and its breaking in the Caffarelli-Kohn-Nirenberg type inequalities for $p=1
The main purpose of this article is to study the Caffarelli-Kohn-Nirenberg type inequalities (1.2) with p = 1. We show that symmetry breaking of the best constants occurs provided that a parameter [absolute value of ([gamma])] is large enough. In the argument we effectively employ equivalence betwee...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Japan Academy. Series A. Mathematical sciences 2016-04, Vol.92A (NO. 4), p.51 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The main purpose of this article is to study the Caffarelli-Kohn-Nirenberg type inequalities (1.2) with p = 1. We show that symmetry breaking of the best constants occurs provided that a parameter [absolute value of ([gamma])] is large enough. In the argument we effectively employ equivalence between the Caffarelli-Kohn-Nirenberg type inequalities with p = 1 and the isoperimetric inequalities with weights. Key words: CKN-type inequality; symmetry break; weighted Hardy-Sobolev inequality; best constant. |
---|---|
ISSN: | 0386-2194 |
DOI: | 10.3792/pjaa.92.51 |