Index Sets for n-Decidable Structures Categorical Relative to m-Decidable Presentations
We say that a structure is categorical relative to n-decidable presentations ( or autostable relative to n-constructivizations ) if any two n-decidable copies of the structure are computably isomorphic. For n = 0 , we have the classical definition of a computably categorical ( autostable ) structure...
Gespeichert in:
Veröffentlicht in: | Algebra and logic 2015-09, Vol.54 (4), p.336-341 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We say that a structure is categorical relative to n-decidable presentations
(
or autostable relative to n-constructivizations
)
if any two n-decidable copies of the structure are computably isomorphic. For n
= 0
, we have the classical definition of a computably categorical
(
autostable
)
structure. Downey, Kach, Lempp, Lewis, Montalb´an, and Turetsky proved that there is no simple syntactic characterization of computable categoricity. More formally, they showed that the index set of computably categorical structures is Π
1
1
-complete. Here we study index sets of n-decidable structures that are categorical relative to m-decidable presentations, for various m, n ∈ ω. If m ≥ n ≥
0
, then the index set is again Π
1
1
-complete, i.e., there is no nice description of the class of n-decidable structures that are categorical relative to m-decidable presentations. In the case m
=
n−
1
≥
0
, the index set is Π
4
0
-complete, while if
0
≤ m ≤ n−
2
, the index set is Π
3
0
-complete. |
---|---|
ISSN: | 0002-5232 1573-8302 |
DOI: | 10.1007/s10469-015-9353-6 |