Caspase Activation of p21-Activated Kinase 2 Occurs During Cisplatin-Induced Apoptosis of SH-SY5Y Neuroblastoma Cells and in SH-SY5Y Cell Culture Models of Alzheimer's and Parkinson's Disease

Jerry W. Marlin, Yu-Wen E. Chang and Rolf JakobiDepartment of Biochemistry, Kansas City University of Medicine and Biosciences, 1750 Independence Ave, Kansas City, MO64106. Abstractp21-activated kinase 2 (PAK-2) appears to have a dual function in the regulation of cell survival and cell death. Activ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese clinical medicine 2010-04, Vol.2010 (3), p.23
Hauptverfasser: Marlin, Jerry W., Chang, Yu-Wen E., Jakobi, Rolf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Jerry W. Marlin, Yu-Wen E. Chang and Rolf JakobiDepartment of Biochemistry, Kansas City University of Medicine and Biosciences, 1750 Independence Ave, Kansas City, MO64106. Abstractp21-activated kinase 2 (PAK-2) appears to have a dual function in the regulation of cell survival and cell death. Activation of full-length PAK-2 by the p21 G-proteins Rac or Cdc42 stimulates cell survival. However, PAK-2 is unique among the PAK family because it is also activated through proteolytic cleavage by caspase 3 or similar caspases to generate the constitutively active PAK-2p34 fragment. Caspase activation of PAK-2 correlates with the induction of apoptosis in response to many stimuli and recombinant expression of PAK-2p34 has been shown to stimulate apoptosis in several human cell lines. Here, we show that caspase activation of PAK-2 also occurs during cisplatin-induced apoptosis of SH-SY5Y neuroblastoma cells as well as in SH-SY5Y cell culture models for Alzheimer's and Parkinson's disease. Inhibition of mitochondrial complex I or of ubiquitin/proteasome-mediated protein degradation, which both appear to be involved in Parkinson's disease, induce apoptosis and caspase activation of PAK-2 in SH-SY5Y cells. Overexpression of the amyloid precursor protein, which results in accumulation and aggregation of β-amyloid peptide, the main component of β-amyloid plaques in Alzheimer's disease, also induces apoptosis and caspase activation of PAK-2 in SH-SY5Y cells. Expression of the PAK-2 regulatory domain inhibits caspase-activated PAK-2p34 and prevents apoptosis in 293T human embryonic kidney cells, indicating that caspase activation of PAK-2 is directly involved in the apoptotic response. This is the first evidence that caspase activation of PAK-2 correlates with apoptosis in cell culture models of Alzheimer's and Parkinson's disease and that selective inhibition of caspase-activated PAK-2p34 could prevent apoptosis.
ISSN:1179-0660
1179-0660
1179-6707
DOI:10.4137/JCD.S4611