Adaptive Near-Optimal Rank Tensor Approximation for High-Dimensional Operator Equations

We consider a framework for the construction of iterative schemes for operator equations that combine low-rank approximation in tensor formats and adaptive approximation in a basis. Under fairly general assumptions, we conduct a rigorous convergence analysis, where all parameters required for the ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of computational mathematics 2015-08, Vol.15 (4), p.839-898
Hauptverfasser: Bachmayr, Markus, Dahmen, Wolfgang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a framework for the construction of iterative schemes for operator equations that combine low-rank approximation in tensor formats and adaptive approximation in a basis. Under fairly general assumptions, we conduct a rigorous convergence analysis, where all parameters required for the execution of the methods depend only on the underlying infinite-dimensional problem, but not on a concrete discretization. Under certain assumptions on the rates for the involved low-rank approximations and basis expansions, we can also give bounds on the computational complexity of the iteration as a function of the prescribed target error. Our theoretical findings are illustrated and supported by computational experiments. These demonstrate that problems in very high dimensions can be treated with controlled solution accuracy.
ISSN:1615-3375
1615-3383
DOI:10.1007/s10208-013-9187-3