Genetic Background Effects on Disease Onset and Lifespan of the Mutant Dynactin p150.sup.Glued Mouse Model of Motor Neuron Disease

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease primarily affecting motor neurons in the central nervous system. Although most cases of ALS are sporadic, about 5-10% of cases are familial (FALS) with approximately 20% of FALS caused by mutations in the Cu/Zn superoxide dismutase (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-03, Vol.10 (3)
Hauptverfasser: Heiman-Patterson, Terry D, Blankenhorn, Elizabeth P, Sher, Roger B, Jiang, Juliann, Welsh, Priscilla, Dixon, Meredith C, Jeffrey, Jeremy I, Wong, Philip, Cox, Gregory A, Alexander, Guillermo M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease primarily affecting motor neurons in the central nervous system. Although most cases of ALS are sporadic, about 5-10% of cases are familial (FALS) with approximately 20% of FALS caused by mutations in the Cu/Zn superoxide dismutase (SOD1) gene. We have reported that hSOD1-G93A transgenic mice modeling this disease show a more severe phenotype when the transgene is bred on a pure SJL background and a milder phenotype when bred on a pure B6 background and that these phenotype differences link to a region on mouse Chromosome 17.To examine whether other models of motor neuron degeneration are affected by genetic background, we bred the mutant human dynactin p150.sup.Glued (G59S-hDCTN1) transgene onto inbred SJL and B6 congenic lines. This model is based on an autosomal dominant lower motor neuron disease in humans linked to a mutation in the p150.sup.Glued subunit of the dynactin complex. As seen in hSOD1-G93A mice, we observed a more severe phenotype with earlier disease onset (p
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0117848