On the solvability of the Cauchy problem with growing initial data for a class of anisotropic parabolic equations

We study the Cauchy problem for a doubly nonlinear parabolic equation with anisotropic degeneration in the case where the initial data are locally finite Radon measures growing, generally saying, at infinity. The weak solution of the problem is obtained as the limit of regular solutions with smoothe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2012-02, Vol.181 (1), p.28-46
Hauptverfasser: Degtyarev, Sergei P., Tedeev, Anatolii F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the Cauchy problem for a doubly nonlinear parabolic equation with anisotropic degeneration in the case where the initial data are locally finite Radon measures growing, generally saying, at infinity. The weak solution of the problem is obtained as the limit of regular solutions with smoothed initial data.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-012-0674-x