On the solvability of the Cauchy problem with growing initial data for a class of anisotropic parabolic equations
We study the Cauchy problem for a doubly nonlinear parabolic equation with anisotropic degeneration in the case where the initial data are locally finite Radon measures growing, generally saying, at infinity. The weak solution of the problem is obtained as the limit of regular solutions with smoothe...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2012-02, Vol.181 (1), p.28-46 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the Cauchy problem for a doubly nonlinear parabolic equation with anisotropic degeneration in the case where the initial data are locally finite Radon measures growing, generally saying, at infinity. The weak solution of the problem is obtained as the limit of regular solutions with smoothed initial data. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-012-0674-x |