Solvability of the dirichlet problem for the heat equation in noncylindrical domains with isolated characteristic points at the boundary

We study the solvabitlity of the Dirichlet problem for the heat operator in weighted Sobolev [L.sub.p]-spaces in noncylindrical paraboloid type domains with isolated characteristic points at the boundary. For any p > 1 we find a necessary and sufficient [L.sub.p]-solvability condition and establi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2011-08, Vol.176 (6), p.710
Hauptverfasser: Alkhutov, Yu.A, Kurlykova, L.I
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 710
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 176
creator Alkhutov, Yu.A
Kurlykova, L.I
description We study the solvabitlity of the Dirichlet problem for the heat operator in weighted Sobolev [L.sub.p]-spaces in noncylindrical paraboloid type domains with isolated characteristic points at the boundary. For any p > 1 we find a necessary and sufficient [L.sub.p]-solvability condition and establish an [L.sub.p]-estimate. The results are formulated in terms of Muckenhoupt type conditions on the weight. Bibliography: 10 titles.
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A377290160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A377290160</galeid><sourcerecordid>A377290160</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1390-55a71f1d1f3cfb918d3d3a1944405a99dbc32eb8db891788025ed558e89cf5433</originalsourceid><addsrcrecordid>eNptjttKAzEQhhdRUKvvEPDKi5Wk2TTJZREPBUHwcF2yyaQ7kiZ1k6p9Ax_b9XBhoczFDDPf9zN71RETktdKarE_zFSOa85lc1gd5_xCKZUTxY-qz8cU3kyLAcuGJE9KB8Rhj7YLUMiqT22AJfGp_7l0YAqB17UpmCLBSGKKdhMwusEwgbi0NBgzecfSEcwpmAKO2M70xhboMRe0ZJUwlkyGpO_INq2jM_3mpDrwJmQ4_euj6vn66unytr67v5ldTu_qBeOa1kIYyTxzzHPrW82U444bppumocJo7VrLx9Aq1yrNpFJ0LMAJoUBp60XD-ag6-81dmABzjD6V4bklZjufcinHmrIJHah6B7WACL0JKYLHYb3FX-zgh3KwRLtTON8SBqbAR1mYdc7z2ePDf_YLbcKOhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solvability of the dirichlet problem for the heat equation in noncylindrical domains with isolated characteristic points at the boundary</title><source>SpringerNature Complete Journals</source><creator>Alkhutov, Yu.A ; Kurlykova, L.I</creator><creatorcontrib>Alkhutov, Yu.A ; Kurlykova, L.I</creatorcontrib><description>We study the solvabitlity of the Dirichlet problem for the heat operator in weighted Sobolev [L.sub.p]-spaces in noncylindrical paraboloid type domains with isolated characteristic points at the boundary. For any p &gt; 1 we find a necessary and sufficient [L.sub.p]-solvability condition and establish an [L.sub.p]-estimate. The results are formulated in terms of Muckenhoupt type conditions on the weight. Bibliography: 10 titles.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><language>eng</language><publisher>Springer</publisher><ispartof>Journal of mathematical sciences (New York, N.Y.), 2011-08, Vol.176 (6), p.710</ispartof><rights>COPYRIGHT 2011 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Alkhutov, Yu.A</creatorcontrib><creatorcontrib>Kurlykova, L.I</creatorcontrib><title>Solvability of the dirichlet problem for the heat equation in noncylindrical domains with isolated characteristic points at the boundary</title><title>Journal of mathematical sciences (New York, N.Y.)</title><description>We study the solvabitlity of the Dirichlet problem for the heat operator in weighted Sobolev [L.sub.p]-spaces in noncylindrical paraboloid type domains with isolated characteristic points at the boundary. For any p &gt; 1 we find a necessary and sufficient [L.sub.p]-solvability condition and establish an [L.sub.p]-estimate. The results are formulated in terms of Muckenhoupt type conditions on the weight. Bibliography: 10 titles.</description><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNptjttKAzEQhhdRUKvvEPDKi5Wk2TTJZREPBUHwcF2yyaQ7kiZ1k6p9Ax_b9XBhoczFDDPf9zN71RETktdKarE_zFSOa85lc1gd5_xCKZUTxY-qz8cU3kyLAcuGJE9KB8Rhj7YLUMiqT22AJfGp_7l0YAqB17UpmCLBSGKKdhMwusEwgbi0NBgzecfSEcwpmAKO2M70xhboMRe0ZJUwlkyGpO_INq2jM_3mpDrwJmQ4_euj6vn66unytr67v5ldTu_qBeOa1kIYyTxzzHPrW82U444bppumocJo7VrLx9Aq1yrNpFJ0LMAJoUBp60XD-ag6-81dmABzjD6V4bklZjufcinHmrIJHah6B7WACL0JKYLHYb3FX-zgh3KwRLtTON8SBqbAR1mYdc7z2ePDf_YLbcKOhA</recordid><startdate>20110803</startdate><enddate>20110803</enddate><creator>Alkhutov, Yu.A</creator><creator>Kurlykova, L.I</creator><general>Springer</general><scope>ISR</scope></search><sort><creationdate>20110803</creationdate><title>Solvability of the dirichlet problem for the heat equation in noncylindrical domains with isolated characteristic points at the boundary</title><author>Alkhutov, Yu.A ; Kurlykova, L.I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1390-55a71f1d1f3cfb918d3d3a1944405a99dbc32eb8db891788025ed558e89cf5433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alkhutov, Yu.A</creatorcontrib><creatorcontrib>Kurlykova, L.I</creatorcontrib><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alkhutov, Yu.A</au><au>Kurlykova, L.I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solvability of the dirichlet problem for the heat equation in noncylindrical domains with isolated characteristic points at the boundary</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><date>2011-08-03</date><risdate>2011</risdate><volume>176</volume><issue>6</issue><spage>710</spage><pages>710-</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We study the solvabitlity of the Dirichlet problem for the heat operator in weighted Sobolev [L.sub.p]-spaces in noncylindrical paraboloid type domains with isolated characteristic points at the boundary. For any p &gt; 1 we find a necessary and sufficient [L.sub.p]-solvability condition and establish an [L.sub.p]-estimate. The results are formulated in terms of Muckenhoupt type conditions on the weight. Bibliography: 10 titles.</abstract><pub>Springer</pub><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2011-08, Vol.176 (6), p.710
issn 1072-3374
1573-8795
language eng
recordid cdi_gale_infotracmisc_A377290160
source SpringerNature Complete Journals
title Solvability of the dirichlet problem for the heat equation in noncylindrical domains with isolated characteristic points at the boundary
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A50%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solvability%20of%20the%20dirichlet%20problem%20for%20the%20heat%20equation%20in%20noncylindrical%20domains%20with%20isolated%20characteristic%20points%20at%20the%20boundary&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Alkhutov,%20Yu.A&rft.date=2011-08-03&rft.volume=176&rft.issue=6&rft.spage=710&rft.pages=710-&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/&rft_dat=%3Cgale%3EA377290160%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A377290160&rfr_iscdi=true