Solvability of the dirichlet problem for the heat equation in noncylindrical domains with isolated characteristic points at the boundary
We study the solvabitlity of the Dirichlet problem for the heat operator in weighted Sobolev [L.sub.p]-spaces in noncylindrical paraboloid type domains with isolated characteristic points at the boundary. For any p > 1 we find a necessary and sufficient [L.sub.p]-solvability condition and establi...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2011-08, Vol.176 (6), p.710 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 710 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 176 |
creator | Alkhutov, Yu.A Kurlykova, L.I |
description | We study the solvabitlity of the Dirichlet problem for the heat operator in weighted Sobolev [L.sub.p]-spaces in noncylindrical paraboloid type domains with isolated characteristic points at the boundary. For any p > 1 we find a necessary and sufficient [L.sub.p]-solvability condition and establish an [L.sub.p]-estimate. The results are formulated in terms of Muckenhoupt type conditions on the weight. Bibliography: 10 titles. |
format | Article |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A377290160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A377290160</galeid><sourcerecordid>A377290160</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1390-55a71f1d1f3cfb918d3d3a1944405a99dbc32eb8db891788025ed558e89cf5433</originalsourceid><addsrcrecordid>eNptjttKAzEQhhdRUKvvEPDKi5Wk2TTJZREPBUHwcF2yyaQ7kiZ1k6p9Ax_b9XBhoczFDDPf9zN71RETktdKarE_zFSOa85lc1gd5_xCKZUTxY-qz8cU3kyLAcuGJE9KB8Rhj7YLUMiqT22AJfGp_7l0YAqB17UpmCLBSGKKdhMwusEwgbi0NBgzecfSEcwpmAKO2M70xhboMRe0ZJUwlkyGpO_INq2jM_3mpDrwJmQ4_euj6vn66unytr67v5ldTu_qBeOa1kIYyTxzzHPrW82U444bppumocJo7VrLx9Aq1yrNpFJ0LMAJoUBp60XD-ag6-81dmABzjD6V4bklZjufcinHmrIJHah6B7WACL0JKYLHYb3FX-zgh3KwRLtTON8SBqbAR1mYdc7z2ePDf_YLbcKOhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solvability of the dirichlet problem for the heat equation in noncylindrical domains with isolated characteristic points at the boundary</title><source>SpringerNature Complete Journals</source><creator>Alkhutov, Yu.A ; Kurlykova, L.I</creator><creatorcontrib>Alkhutov, Yu.A ; Kurlykova, L.I</creatorcontrib><description>We study the solvabitlity of the Dirichlet problem for the heat operator in weighted Sobolev [L.sub.p]-spaces in noncylindrical paraboloid type domains with isolated characteristic points at the boundary. For any p > 1 we find a necessary and sufficient [L.sub.p]-solvability condition and establish an [L.sub.p]-estimate. The results are formulated in terms of Muckenhoupt type conditions on the weight. Bibliography: 10 titles.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><language>eng</language><publisher>Springer</publisher><ispartof>Journal of mathematical sciences (New York, N.Y.), 2011-08, Vol.176 (6), p.710</ispartof><rights>COPYRIGHT 2011 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Alkhutov, Yu.A</creatorcontrib><creatorcontrib>Kurlykova, L.I</creatorcontrib><title>Solvability of the dirichlet problem for the heat equation in noncylindrical domains with isolated characteristic points at the boundary</title><title>Journal of mathematical sciences (New York, N.Y.)</title><description>We study the solvabitlity of the Dirichlet problem for the heat operator in weighted Sobolev [L.sub.p]-spaces in noncylindrical paraboloid type domains with isolated characteristic points at the boundary. For any p > 1 we find a necessary and sufficient [L.sub.p]-solvability condition and establish an [L.sub.p]-estimate. The results are formulated in terms of Muckenhoupt type conditions on the weight. Bibliography: 10 titles.</description><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNptjttKAzEQhhdRUKvvEPDKi5Wk2TTJZREPBUHwcF2yyaQ7kiZ1k6p9Ax_b9XBhoczFDDPf9zN71RETktdKarE_zFSOa85lc1gd5_xCKZUTxY-qz8cU3kyLAcuGJE9KB8Rhj7YLUMiqT22AJfGp_7l0YAqB17UpmCLBSGKKdhMwusEwgbi0NBgzecfSEcwpmAKO2M70xhboMRe0ZJUwlkyGpO_INq2jM_3mpDrwJmQ4_euj6vn66unytr67v5ldTu_qBeOa1kIYyTxzzHPrW82U444bppumocJo7VrLx9Aq1yrNpFJ0LMAJoUBp60XD-ag6-81dmABzjD6V4bklZjufcinHmrIJHah6B7WACL0JKYLHYb3FX-zgh3KwRLtTON8SBqbAR1mYdc7z2ePDf_YLbcKOhA</recordid><startdate>20110803</startdate><enddate>20110803</enddate><creator>Alkhutov, Yu.A</creator><creator>Kurlykova, L.I</creator><general>Springer</general><scope>ISR</scope></search><sort><creationdate>20110803</creationdate><title>Solvability of the dirichlet problem for the heat equation in noncylindrical domains with isolated characteristic points at the boundary</title><author>Alkhutov, Yu.A ; Kurlykova, L.I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1390-55a71f1d1f3cfb918d3d3a1944405a99dbc32eb8db891788025ed558e89cf5433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alkhutov, Yu.A</creatorcontrib><creatorcontrib>Kurlykova, L.I</creatorcontrib><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alkhutov, Yu.A</au><au>Kurlykova, L.I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solvability of the dirichlet problem for the heat equation in noncylindrical domains with isolated characteristic points at the boundary</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><date>2011-08-03</date><risdate>2011</risdate><volume>176</volume><issue>6</issue><spage>710</spage><pages>710-</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We study the solvabitlity of the Dirichlet problem for the heat operator in weighted Sobolev [L.sub.p]-spaces in noncylindrical paraboloid type domains with isolated characteristic points at the boundary. For any p > 1 we find a necessary and sufficient [L.sub.p]-solvability condition and establish an [L.sub.p]-estimate. The results are formulated in terms of Muckenhoupt type conditions on the weight. Bibliography: 10 titles.</abstract><pub>Springer</pub><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2011-08, Vol.176 (6), p.710 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_gale_infotracmisc_A377290160 |
source | SpringerNature Complete Journals |
title | Solvability of the dirichlet problem for the heat equation in noncylindrical domains with isolated characteristic points at the boundary |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A50%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solvability%20of%20the%20dirichlet%20problem%20for%20the%20heat%20equation%20in%20noncylindrical%20domains%20with%20isolated%20characteristic%20points%20at%20the%20boundary&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Alkhutov,%20Yu.A&rft.date=2011-08-03&rft.volume=176&rft.issue=6&rft.spage=710&rft.pages=710-&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/&rft_dat=%3Cgale%3EA377290160%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A377290160&rfr_iscdi=true |