Solvability of the dirichlet problem for the heat equation in noncylindrical domains with isolated characteristic points at the boundary

We study the solvabitlity of the Dirichlet problem for the heat operator in weighted Sobolev [L.sub.p]-spaces in noncylindrical paraboloid type domains with isolated characteristic points at the boundary. For any p > 1 we find a necessary and sufficient [L.sub.p]-solvability condition and establi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2011-08, Vol.176 (6), p.710
Hauptverfasser: Alkhutov, Yu.A, Kurlykova, L.I
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the solvabitlity of the Dirichlet problem for the heat operator in weighted Sobolev [L.sub.p]-spaces in noncylindrical paraboloid type domains with isolated characteristic points at the boundary. For any p > 1 we find a necessary and sufficient [L.sub.p]-solvability condition and establish an [L.sub.p]-estimate. The results are formulated in terms of Muckenhoupt type conditions on the weight. Bibliography: 10 titles.
ISSN:1072-3374
1573-8795