Existentially Closed Subgroups of Free Nilpotent Groups

Let be a variety of all nilpotent groups of class at most c, and let N r,c be a free nilpotent group of finite rank r and nilpotency class c. It is proved that a subgroup N of N r,c for c ≥ 3 is existentially closed in N r,c iff N is a free factor of the group N r,c with respect to the variety . Con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and logic 2014-03, Vol.53 (1), p.29-38
Hauptverfasser: Roman’kov, V. A., Khisamiev, N. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let be a variety of all nilpotent groups of class at most c, and let N r,c be a free nilpotent group of finite rank r and nilpotency class c. It is proved that a subgroup N of N r,c for c ≥ 3 is existentially closed in N r,c iff N is a free factor of the group N r,c with respect to the variety . Consequently, N ≃ N m,c , 1 ≤ m ≤ r, and m ≥ c − 1.
ISSN:0002-5232
1573-8302
DOI:10.1007/s10469-014-9269-6