Existentially Closed Subgroups of Free Nilpotent Groups
Let be a variety of all nilpotent groups of class at most c, and let N r,c be a free nilpotent group of finite rank r and nilpotency class c. It is proved that a subgroup N of N r,c for c ≥ 3 is existentially closed in N r,c iff N is a free factor of the group N r,c with respect to the variety . Con...
Gespeichert in:
Veröffentlicht in: | Algebra and logic 2014-03, Vol.53 (1), p.29-38 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
be a variety of all nilpotent groups of class at most c, and let N
r,c
be a free nilpotent group of finite rank r and nilpotency class c. It is proved that a subgroup N of N
r,c
for c ≥ 3 is existentially closed in N
r,c
iff N is a free factor of the group N
r,c
with respect to the variety
. Consequently, N ≃ N
m,c
, 1 ≤ m ≤ r, and m ≥ c − 1. |
---|---|
ISSN: | 0002-5232 1573-8302 |
DOI: | 10.1007/s10469-014-9269-6 |