Uniqueness of a generalized entropy solution to the Cauchy problem for a quasilinear conservation law with convex flux

For a one-dimensional conservation law with convex flux function we prove the uniqueness of a locally bounded generalized entropy solution to the Cauchy problem with an arbitrary bounded measurable initial function. Bibliography: 12 titles. Illustrations: 2 figures.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2010-08, Vol.169 (1), p.98-112
1. Verfasser: Panov, E. Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a one-dimensional conservation law with convex flux function we prove the uniqueness of a locally bounded generalized entropy solution to the Cauchy problem with an arbitrary bounded measurable initial function. Bibliography: 12 titles. Illustrations: 2 figures.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-010-0041-8