Uniqueness of a generalized entropy solution to the Cauchy problem for a quasilinear conservation law with convex flux
For a one-dimensional conservation law with convex flux function we prove the uniqueness of a locally bounded generalized entropy solution to the Cauchy problem with an arbitrary bounded measurable initial function. Bibliography: 12 titles. Illustrations: 2 figures.
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2010-08, Vol.169 (1), p.98-112 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a one-dimensional conservation law with convex flux function we prove the uniqueness of a locally bounded generalized entropy solution to the Cauchy problem with an arbitrary bounded measurable initial function. Bibliography: 12 titles. Illustrations: 2 figures. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-010-0041-8 |