On computing stabilizability radii of linear time-invariant continuous systems
In this paper we focus on a non-convex and non-smooth singular value optimization problem. Our framework encompasses the distance to stabilizability of a linear system (A, B) when both A and B or only one of them are perturbed. We propose a trisection algorithm for the numerical solution of the sing...
Gespeichert in:
Veröffentlicht in: | Electronic transactions on numerical analysis 2013-01, Vol.40, p.407 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we focus on a non-convex and non-smooth singular value optimization problem. Our framework encompasses the distance to stabilizability of a linear system (A, B) when both A and B or only one of them are perturbed. We propose a trisection algorithm for the numerical solution of the singular value optimization problem. This method requires O([n.sup.4]) operations on average, where n is the order of the system. Numerical experiments indicate that the method is reliable in practice. Key words. stabilizability radius, optimization, trisection algorithm, linear time-invariant continuous system AMS subject classifications. 65F15, 93D15, 65K10 |
---|---|
ISSN: | 1068-9613 1097-4067 |