On computing stabilizability radii of linear time-invariant continuous systems

In this paper we focus on a non-convex and non-smooth singular value optimization problem. Our framework encompasses the distance to stabilizability of a linear system (A, B) when both A and B or only one of them are perturbed. We propose a trisection algorithm for the numerical solution of the sing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic transactions on numerical analysis 2013-01, Vol.40, p.407
Hauptverfasser: Khanh, D.C, Quyen, H.T, Thanh, D.D.X
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we focus on a non-convex and non-smooth singular value optimization problem. Our framework encompasses the distance to stabilizability of a linear system (A, B) when both A and B or only one of them are perturbed. We propose a trisection algorithm for the numerical solution of the singular value optimization problem. This method requires O([n.sup.4]) operations on average, where n is the order of the system. Numerical experiments indicate that the method is reliable in practice. Key words. stabilizability radius, optimization, trisection algorithm, linear time-invariant continuous system AMS subject classifications. 65F15, 93D15, 65K10
ISSN:1068-9613
1097-4067