Fluorescence of a photosensitizer based on an indotricarbocyanine dye in photochemotherapy
We present the results for studies of the spectral luminescence properties of a symmetric indotricarbocyanine dye (PD1) in HeLa tumor cells and animal tissues in vivo during a photochemotherapy session and after the end of the session. We have established that when the dye is exposed to light in tum...
Gespeichert in:
Veröffentlicht in: | Journal of applied spectroscopy 2011-03, Vol.78 (1), p.110-116 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present the results for studies of the spectral luminescence properties of a symmetric indotricarbocyanine dye (PD1) in HeLa tumor cells and animal tissues in vivo during a photochemotherapy session and after the end of the session. We have established that when the dye is exposed to light in tumor tissues, changes occur in the position and half-width of the dye fluorescence spectra, while in a culture of HeLa cells its spectral characteristics are constant. Based on analysis of the effect of overlap between the absorption spectra of endogenous biomolecules and the fluorescence spectra of the dye plus comparison of the experimental data with numerical modeling results, we have concluded that the observed changes in the fluorescence spectra of PD1 in vivo are due to a change in the ratio of the different forms of hemoglobin in the tumor tissue. We have shown that the spectral characteristics of PD1, fluorescing in the near IR range, correlate with the depth of tumor tissue necrosis achieved on exposure to light. We have established that tumor tissue necrosis occurs down to a depth of 2 cm in the case of all strains studied: S-45, SM-1, and W-256, where as a result of exposure to light, we observe an increase in the half-width and a short-wavelength shift of the fluorescence spectrum of the dye PD1, and also the intensity of its fluorescence does not recover. |
---|---|
ISSN: | 0021-9037 1573-8647 |
DOI: | 10.1007/s10812-011-9432-y |