Hereditarily pure associative algebras over a Dedekind ring whose maximal ideals have finite indices
It is proved that an algebra over a Dedekind ring whose maximal ideals have finite indices is hereditarily pure iff it is representable as a direct sum of an elementary Abelian algebra and an elementary Jacobsonian algebra.
Gespeichert in:
Veröffentlicht in: | Algebra and logic 2012, Vol.50 (6), p.526-538 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 538 |
---|---|
container_issue | 6 |
container_start_page | 526 |
container_title | Algebra and logic |
container_volume | 50 |
creator | Martynov, L. M. |
description | It is proved that an algebra over a Dedekind ring whose maximal ideals have finite indices is hereditarily pure iff it is representable as a direct sum of an elementary Abelian algebra and an elementary Jacobsonian algebra. |
doi_str_mv | 10.1007/s10469-012-9163-z |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A355557879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A355557879</galeid><sourcerecordid>A355557879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-eda475159a3c9220f2d3a551a5295a34b8f3e59af5b9204b395860ea6b03315f3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAewssU7xI07iZVUeRarEBtbWJBm3LmlS2Wmh_XpchQ0Swl547LnH0hxCbjmbcMby-8BZmumEcZFonsnkeEZGXOUyKSQT52TEGBOJElJckqsQ1vGqs4KNSD1Hj7XrwbvmQLc7jxRC6CoHvdvHulli6SHQbo-eAn3AGj9cW1Pv2iX9XHUB6Qa-3AYa6mqEJtAVRM661vVIY9JVGK7JhY0tvPk5x-T96fFtNk8Wr88vs-kiqSTL-wRrSHPFlQZZaSGYFbUEpTgooRXItCysxNi1qtSCpaXUqsgYQlYyKbmyckzuhn-X0KBxre16D9XGhcpMpYorL3IdU5M_UnHXuHFV16J18f0XwAeg8l0IHq3Z-jixPxjOzMm-GeybaN-c7JtjZMTAhO1JFXqz7na-jdP_A30DzkuHxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hereditarily pure associative algebras over a Dedekind ring whose maximal ideals have finite indices</title><source>SpringerLink Journals - AutoHoldings</source><creator>Martynov, L. M.</creator><creatorcontrib>Martynov, L. M.</creatorcontrib><description>It is proved that an algebra over a Dedekind ring whose maximal ideals have finite indices is hereditarily pure iff it is representable as a direct sum of an elementary Abelian algebra and an elementary Jacobsonian algebra.</description><identifier>ISSN: 0002-5232</identifier><identifier>EISSN: 1573-8302</identifier><identifier>DOI: 10.1007/s10469-012-9163-z</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algebra ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics</subject><ispartof>Algebra and logic, 2012, Vol.50 (6), p.526-538</ispartof><rights>Springer Science+Business Media, Inc. 2012</rights><rights>COPYRIGHT 2012 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-eda475159a3c9220f2d3a551a5295a34b8f3e59af5b9204b395860ea6b03315f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10469-012-9163-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10469-012-9163-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Martynov, L. M.</creatorcontrib><title>Hereditarily pure associative algebras over a Dedekind ring whose maximal ideals have finite indices</title><title>Algebra and logic</title><addtitle>Algebra Logic</addtitle><description>It is proved that an algebra over a Dedekind ring whose maximal ideals have finite indices is hereditarily pure iff it is representable as a direct sum of an elementary Abelian algebra and an elementary Jacobsonian algebra.</description><subject>Algebra</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0002-5232</issn><issn>1573-8302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAewssU7xI07iZVUeRarEBtbWJBm3LmlS2Wmh_XpchQ0Swl547LnH0hxCbjmbcMby-8BZmumEcZFonsnkeEZGXOUyKSQT52TEGBOJElJckqsQ1vGqs4KNSD1Hj7XrwbvmQLc7jxRC6CoHvdvHulli6SHQbo-eAn3AGj9cW1Pv2iX9XHUB6Qa-3AYa6mqEJtAVRM661vVIY9JVGK7JhY0tvPk5x-T96fFtNk8Wr88vs-kiqSTL-wRrSHPFlQZZaSGYFbUEpTgooRXItCysxNi1qtSCpaXUqsgYQlYyKbmyckzuhn-X0KBxre16D9XGhcpMpYorL3IdU5M_UnHXuHFV16J18f0XwAeg8l0IHq3Z-jixPxjOzMm-GeybaN-c7JtjZMTAhO1JFXqz7na-jdP_A30DzkuHxA</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Martynov, L. M.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2012</creationdate><title>Hereditarily pure associative algebras over a Dedekind ring whose maximal ideals have finite indices</title><author>Martynov, L. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-eda475159a3c9220f2d3a551a5295a34b8f3e59af5b9204b395860ea6b03315f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algebra</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martynov, L. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Algebra and logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martynov, L. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hereditarily pure associative algebras over a Dedekind ring whose maximal ideals have finite indices</atitle><jtitle>Algebra and logic</jtitle><stitle>Algebra Logic</stitle><date>2012</date><risdate>2012</risdate><volume>50</volume><issue>6</issue><spage>526</spage><epage>538</epage><pages>526-538</pages><issn>0002-5232</issn><eissn>1573-8302</eissn><abstract>It is proved that an algebra over a Dedekind ring whose maximal ideals have finite indices is hereditarily pure iff it is representable as a direct sum of an elementary Abelian algebra and an elementary Jacobsonian algebra.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10469-012-9163-z</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-5232 |
ispartof | Algebra and logic, 2012, Vol.50 (6), p.526-538 |
issn | 0002-5232 1573-8302 |
language | eng |
recordid | cdi_gale_infotracmisc_A355557879 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Mathematical Logic and Foundations Mathematics Mathematics and Statistics |
title | Hereditarily pure associative algebras over a Dedekind ring whose maximal ideals have finite indices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A20%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hereditarily%20pure%20associative%20algebras%20over%20a%20Dedekind%20ring%20whose%20maximal%20ideals%20have%20finite%20indices&rft.jtitle=Algebra%20and%20logic&rft.au=Martynov,%20L.%20M.&rft.date=2012&rft.volume=50&rft.issue=6&rft.spage=526&rft.epage=538&rft.pages=526-538&rft.issn=0002-5232&rft.eissn=1573-8302&rft_id=info:doi/10.1007/s10469-012-9163-z&rft_dat=%3Cgale_cross%3EA355557879%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A355557879&rfr_iscdi=true |