Hereditarily pure associative algebras over a Dedekind ring whose maximal ideals have finite indices
It is proved that an algebra over a Dedekind ring whose maximal ideals have finite indices is hereditarily pure iff it is representable as a direct sum of an elementary Abelian algebra and an elementary Jacobsonian algebra.
Gespeichert in:
Veröffentlicht in: | Algebra and logic 2012, Vol.50 (6), p.526-538 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is proved that an algebra over a Dedekind ring whose maximal ideals have finite indices is hereditarily pure iff it is representable as a direct sum of an elementary Abelian algebra and an elementary Jacobsonian algebra. |
---|---|
ISSN: | 0002-5232 1573-8302 |
DOI: | 10.1007/s10469-012-9163-z |