Hereditarily pure associative algebras over a Dedekind ring whose maximal ideals have finite indices

It is proved that an algebra over a Dedekind ring whose maximal ideals have finite indices is hereditarily pure iff it is representable as a direct sum of an elementary Abelian algebra and an elementary Jacobsonian algebra.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and logic 2012, Vol.50 (6), p.526-538
1. Verfasser: Martynov, L. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is proved that an algebra over a Dedekind ring whose maximal ideals have finite indices is hereditarily pure iff it is representable as a direct sum of an elementary Abelian algebra and an elementary Jacobsonian algebra.
ISSN:0002-5232
1573-8302
DOI:10.1007/s10469-012-9163-z