Thermal behaviour studies of procaine and benzocaine: Part 1. Kinetic analysis of the active substances under non-isothermal conditions

The analysed substances, procaine and benzocaine, are two anaesthetic agents currently being administered in tablet form, also in the topical (cream, gel, balm) and injectable dosage forms. The TG/DTG/DTA curves were obtained in air at different heating rates. For determination of the heat effects,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2013-07, Vol.113 (1), p.265-271
Hauptverfasser: Fulias, Adriana, Vlase, Gabriela, Grigorie, Carmen, Ledeţi, Ionuţ, Albu, Paul, Bilanin, Mihai, Vlase, Titus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The analysed substances, procaine and benzocaine, are two anaesthetic agents currently being administered in tablet form, also in the topical (cream, gel, balm) and injectable dosage forms. The TG/DTG/DTA curves were obtained in air at different heating rates. For determination of the heat effects, the DTA curves (in μV) were changed with the heat flow curves (in mW), so that the peak area corresponds to an energy in J g −1 or kJ mol −1 . The non-isothermal experiments are preformed to investigate the thermal degradation process of these active substances, both as a solid and are performed in a dynamic atmosphere of air at different heating rates, by heating from room temperature to 500 °C. The kinetic analysis was performed using the TG data in air for the first step of substance’s decomposition at four heating rates: 7, 10, 12 and 15 °C min −1 . The data were processed according to an appropriate strategy to the following kinetic methods: Kissinger–Akahira–Sunose, Flynn–Wall–Ozawa, Friedman and NPK, to obtain realistic kinetic parameters, even if the decomposition process is a complex one. Thermal analysis was supplemented using Fourier Transform infrared spectroscopy coupled with the TG device to identify the anaesthetics with any products which may have formed (EGA—the evolved gas analysis).
ISSN:1388-6150
1588-2926
1572-8943
DOI:10.1007/s10973-013-2959-9