Reduced Whitehead Groups and the Conjugacy Problem for Special Unitary Groups of Anisotropic Hermitian Forms
Let K / k be a separable field extension of degree 2, D be a finite-dimensional central division algebra over K with a K / k -involution τ , h be an Hermitian anisotropic form on a right D -vector space with respect to τ , and let U ( h ) be the unitary group of h . Then the reduced Whitehead group...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2013-07, Vol.192 (2), p.250-262 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
K
/
k
be a separable field extension of degree 2,
D
be a finite-dimensional central division algebra over
K
with a
K
/
k
-involution
τ
,
h
be an Hermitian anisotropic form on a right
D
-vector space with respect to
τ
, and let
U
(
h
) be the unitary group of
h
. Then the reduced Whitehead group of its special linear subgroup is defined as follows:
, where [
U
(
h
),
U
(
h
)] is the commutator subgroup of
U
(
h
). The first main result establishes a link between the above group and its analog SUK
1
(
h
) for the case of isotropic
h
(with respect to the same
τ
).
Theorem
.
There exists a surjective homomorphism from
to SUK
1
(
h
).
Furthermore, we also give a solution of the conjugacy problem for special unitary subgroups of anisotropic Hermitian forms over quaternion division algebras as subgroups of their multiplicative groups. Bibliography: 32 titles. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-013-1391-9 |