Equiangular spherical semidesigns
We show that an equiangular tight frame of m unit vectors in the n –dimensional Euclidean space is a 4th order semidesign if and only if m = n ( n +1)/2. For an important example we present an equiangular tight frame of n + 1 vertices of a regular simplex inscribed into the unit sphere (the Mercedes...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2013-05, Vol.191 (2), p.291-295 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that an equiangular tight frame of m unit vectors in the
n
–dimensional Euclidean space is a 4th order semidesign if and only if
m
=
n
(
n
+1)/2. For an important example we present an equiangular tight frame of
n
+ 1 vertices of a regular simplex inscribed into the unit sphere (the Mercedes–Benz frame). We construct a system of the projections of the midpoints of edges of a simplex onto the sphere and show that this system is a tight frame for any
and is equiangular only if
n
= 2 and
n
= 7. In the last two cases, we find an equiangular 4th order semidesign. Bibliography: 6 titles. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-013-1317-6 |