Bounded saturation-based CTL model checking/Tokestatud kullastamisel pohinev arvutuspuude loogikas valjendatu mudelkontroll
Formal verification is becoming a fundamental step of safety-critical and model-based software development. As part of the verification process, model checking is one of the current advanced techniques to analyse the behaviour of a system. Symbolic model checking is an efficient approach to handling...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Estonian Academy of Sciences 2013-03, Vol.62 (1), p.59 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Formal verification is becoming a fundamental step of safety-critical and model-based software development. As part of the verification process, model checking is one of the current advanced techniques to analyse the behaviour of a system. Symbolic model checking is an efficient approach to handling even complex models with huge state spaces. Saturation is a symbolic algorithm with a special iteration strategy, which is efficient for asynchronous models. Recent advances have resulted in many new kinds of saturation-based algorithms for state space generation and bounded state space generation and also for structural model checking. In this paper, we examine how the combination of two advanced model checking algorithms--bounded saturation and saturation-based structural model checking--can be used to verify systems. Our work is the first attempt to combine these approaches, and this way we are able to handle and examine complex or even infinite state systems. Our measurements show that we can exploit the efficiency of saturation in bounded model checking. Key words: bounded model checking, saturation, Multiple-valued Decision Diagram, temporal logic, Computation Tree Logic. Formaalne verifitseerimine on muutumas ohutuskriitilise ja mudelpohise tarkvaraarenduse oluliseks osaks. Verifitseerimisprotsessi osana on mudelkontrollitehnika uks enim valjaarendatud viise, kuidas susteemi kaitumist analuusida. Mudelkontroll sumbolkujul on tohus lahenemisviis, kasitlemaks isegi keerulisi ja suure olekuruumiga mudeleid. Kullastamine on spetsiaalset iteratsioonistrateegiat kasutav sumbolalgoritm, mis on tohus asunkroonsete mudelite kontrollimisel. Viimaste aastate edusammude tulemusena on leiutatud mitmeid uusi kullastamisel pohinevaid algoritme, naiteks olekuruumi genereerimiseks, piiratud olekuruumi genereerimiseks, aga ka struktuurseks mudelkontrolliks. Kaesolevas artiklis on uuritud, kuidas sobib susteemi verifitseerimiseks kahe taiustatud mudelkontrolli algoritmi--nimelt piiratud kullastamise ja kullastamisel baseeruva struktuurse mudelkontrolli algoritmi kombinatsioon. Meie too on esimene katse uhendada nimetatud kaks lahenemist ja sel viisil kasitleda ning uurida keerulisi voi isegi lopmatu olekuruumiga susteeme. Meie mootmised naitavad, et kullastamine on tohus ka tokestatud mudelkontrolli korral. |
---|---|
ISSN: | 1736-6046 |
DOI: | 10.3176/proc.2013.1.07 |