Blind Network Revenue Management

We consider a general class of network revenue management problems, where mean demand at each point in time is determined by a vector of prices, and the objective is to dynamically adjust these prices so as to maximize expected revenues over a finite sales horizon. A salient feature of our problem i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations research 2012-11, Vol.60 (6), p.1537-1550
Hauptverfasser: Besbes, Omar, Zeevi, Assaf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a general class of network revenue management problems, where mean demand at each point in time is determined by a vector of prices, and the objective is to dynamically adjust these prices so as to maximize expected revenues over a finite sales horizon. A salient feature of our problem is that the decision maker can only observe realized demand over time but does not know the underlying demand function that maps prices into instantaneous demand rate. We introduce a family of "blind" pricing policies that are designed to balance trade-offs between exploration (demand learning) and exploitation (pricing to optimize revenues). We derive bounds on the revenue loss incurred by said policies in comparison to the optimal dynamic pricing policy that knows the demand function a priori, and we prove that asymptotically, as the volume of sales increases, this gap shrinks to zero.
ISSN:0030-364X
1526-5463
DOI:10.1287/opre.1120.1103