Identification of new checkpoint kinase-1 (Chk1) inhibitors by docking, 3D-QSAR, and pharmacophore-modeling methods

Inhibition of checkpoint kinase-1 (Chk1) by small molecules is of great therapeutic interest in the field of oncology and for understanding cell-cycle regulations. This paper presents a model with elements from docking, pharmacophore mapping, the 3D-QSAR approaches CoMFA, CoMSIA and CoRIA, and virtu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of chemistry 2012-08, Vol.90 (8), p.675-692
Hauptverfasser: Ambre, Premlata K, Pissurlenkar, Raghuvir R.S, Coutinho, Evans C, Iyer, Radhakrishnan P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inhibition of checkpoint kinase-1 (Chk1) by small molecules is of great therapeutic interest in the field of oncology and for understanding cell-cycle regulations. This paper presents a model with elements from docking, pharmacophore mapping, the 3D-QSAR approaches CoMFA, CoMSIA and CoRIA, and virtual screening to identify novel hits against Chk1. Docking, 3D-QSAR (CoRIA, CoMFA and CoMSIA), and pharmacophore studies delineate crucial site points on the Chk1 inhibitors, which can be modified to improve activity. The docking analysis showed residues in the proximity of the ligands that are involved in ligand–receptor interactions, whereas CoRIA models were able to derive the magnitude of these interactions that impact the activity. The ligand-based 3D-QSAR methods (CoMFA and CoMSIA) highlight key areas on the molecules that are beneficial and (or) detrimental for activity. The docking studies and 3D-QSAR models are in excellent agreement in terms of binding-site interactions. The pharmacophore hypotheses validated using sensitivity, selectivity, and specificity parameters is a four-point model, characterized by a hydrogen-bond acceptor (A), hydrogen-bond donor (D), and two hydrophobes (H). This map was used to screen a database of 2.7 million druglike compounds, which were pruned to a small set of potential inhibitors by CoRIA, CoMFA, and CoMSIA models with predicted activity in the range of 8.5–10.5 log units.
ISSN:0008-4042
1480-3291
DOI:10.1139/v2012-047