Discovery of Periodic Patterns in Sequence Data: A Variance-Based Approach

We address the discovery of periodic patterns in sequence data. Building on prior work in this area, we present definitions and new methods for characterizing and identifying four types of periodic patterns. A unifying concept across the different types of periodic patterns we consider is the use of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:INFORMS journal on computing 2012-06, Vol.24 (3), p.372-386
Hauptverfasser: Yang, Yinghui "Catherine", Padmanabhan, Balaji, Liu, Hongyan, Wang, Xiaoyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 386
container_issue 3
container_start_page 372
container_title INFORMS journal on computing
container_volume 24
creator Yang, Yinghui "Catherine"
Padmanabhan, Balaji
Liu, Hongyan
Wang, Xiaoyu
description We address the discovery of periodic patterns in sequence data. Building on prior work in this area, we present definitions and new methods for characterizing and identifying four types of periodic patterns. A unifying concept across the different types of periodic patterns we consider is the use of statistical variance to define periodicity. This lends itself to efficient variance-reduction algorithms for identifying periodic patterns. We motivate and test our approach using both extensive simulated sequences and real sequence data from online clickstream data.
doi_str_mv 10.1287/ijoc.1110.0457
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_infotracmisc_A300343904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A300343904</galeid><sourcerecordid>A300343904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-24e196dfe2ee8ee192ec04d0f53f98c71039b6eb85926d55a297a68f2a6e0d7b3</originalsourceid><addsrcrecordid>eNqFUU1LAzEQDaJgrV49B7y6NZvd7CbeausnBQt-XEOanbQp7aYmu0L_vVkUqlCQQDIzvDczLw-h85QMUsrLK7t0epCmMSU5Kw9QL2W0SBij_DDGRKSJ4Kw4RichLAkheZaLHnoa26DdJ_gtdgZPwVtXWY2nqmnA1wHbGr_ARwu1BjxWjbrGQ_yuvFWxkNyoABUebjbeKb04RUdGrQKc_bx99HZ3-zp6SCbP94-j4STRecmbhOaQiqIyQAE4xJiCJnlFDMuM4LpMSSZmBcw4E7SoGFNUlKrghqoCSFXOsj66-O4bx8bNQiOXrvV1HCkjNyt5wUm5Q83VCqStjWu80uuoVg4zQrI8E_EL-ijZg5pDDV6tXA3GxvIf_GAPPp4K1lbvJVz-IszaYGsI8Qp2vmjCXLUh7O2vvQvBg5Ebb9fKb6M02bksO5dl57LsXN4J6Hbx6_Af_guz7KYH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1033786807</pqid></control><display><type>article</type><title>Discovery of Periodic Patterns in Sequence Data: A Variance-Based Approach</title><source>INFORMS PubsOnLine</source><source>Business Source Complete</source><creator>Yang, Yinghui "Catherine" ; Padmanabhan, Balaji ; Liu, Hongyan ; Wang, Xiaoyu</creator><creatorcontrib>Yang, Yinghui "Catherine" ; Padmanabhan, Balaji ; Liu, Hongyan ; Wang, Xiaoyu</creatorcontrib><description>We address the discovery of periodic patterns in sequence data. Building on prior work in this area, we present definitions and new methods for characterizing and identifying four types of periodic patterns. A unifying concept across the different types of periodic patterns we consider is the use of statistical variance to define periodicity. This lends itself to efficient variance-reduction algorithms for identifying periodic patterns. We motivate and test our approach using both extensive simulated sequences and real sequence data from online clickstream data.</description><identifier>ISSN: 1091-9856</identifier><identifier>EISSN: 1526-5528</identifier><identifier>EISSN: 1091-9856</identifier><identifier>DOI: 10.1287/ijoc.1110.0457</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Algorithms ; analysis of algorithms ; Data mining ; Forecasts and trends ; Fraud ; Fraud prevention ; Heuristic ; Information services ; Information services industry ; Methods ; sequential patterns ; Studies ; variance reduction</subject><ispartof>INFORMS journal on computing, 2012-06, Vol.24 (3), p.372-386</ispartof><rights>COPYRIGHT 2012 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Summer 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-24e196dfe2ee8ee192ec04d0f53f98c71039b6eb85926d55a297a68f2a6e0d7b3</citedby><cites>FETCH-LOGICAL-c478t-24e196dfe2ee8ee192ec04d0f53f98c71039b6eb85926d55a297a68f2a6e0d7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/ijoc.1110.0457$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,776,780,3678,27903,27904,62593</link.rule.ids></links><search><creatorcontrib>Yang, Yinghui "Catherine"</creatorcontrib><creatorcontrib>Padmanabhan, Balaji</creatorcontrib><creatorcontrib>Liu, Hongyan</creatorcontrib><creatorcontrib>Wang, Xiaoyu</creatorcontrib><title>Discovery of Periodic Patterns in Sequence Data: A Variance-Based Approach</title><title>INFORMS journal on computing</title><description>We address the discovery of periodic patterns in sequence data. Building on prior work in this area, we present definitions and new methods for characterizing and identifying four types of periodic patterns. A unifying concept across the different types of periodic patterns we consider is the use of statistical variance to define periodicity. This lends itself to efficient variance-reduction algorithms for identifying periodic patterns. We motivate and test our approach using both extensive simulated sequences and real sequence data from online clickstream data.</description><subject>Algorithms</subject><subject>analysis of algorithms</subject><subject>Data mining</subject><subject>Forecasts and trends</subject><subject>Fraud</subject><subject>Fraud prevention</subject><subject>Heuristic</subject><subject>Information services</subject><subject>Information services industry</subject><subject>Methods</subject><subject>sequential patterns</subject><subject>Studies</subject><subject>variance reduction</subject><issn>1091-9856</issn><issn>1526-5528</issn><issn>1091-9856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNqFUU1LAzEQDaJgrV49B7y6NZvd7CbeausnBQt-XEOanbQp7aYmu0L_vVkUqlCQQDIzvDczLw-h85QMUsrLK7t0epCmMSU5Kw9QL2W0SBij_DDGRKSJ4Kw4RichLAkheZaLHnoa26DdJ_gtdgZPwVtXWY2nqmnA1wHbGr_ARwu1BjxWjbrGQ_yuvFWxkNyoABUebjbeKb04RUdGrQKc_bx99HZ3-zp6SCbP94-j4STRecmbhOaQiqIyQAE4xJiCJnlFDMuM4LpMSSZmBcw4E7SoGFNUlKrghqoCSFXOsj66-O4bx8bNQiOXrvV1HCkjNyt5wUm5Q83VCqStjWu80uuoVg4zQrI8E_EL-ijZg5pDDV6tXA3GxvIf_GAPPp4K1lbvJVz-IszaYGsI8Qp2vmjCXLUh7O2vvQvBg5Ebb9fKb6M02bksO5dl57LsXN4J6Hbx6_Af_guz7KYH</recordid><startdate>20120622</startdate><enddate>20120622</enddate><creator>Yang, Yinghui "Catherine"</creator><creator>Padmanabhan, Balaji</creator><creator>Liu, Hongyan</creator><creator>Wang, Xiaoyu</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>JQ2</scope></search><sort><creationdate>20120622</creationdate><title>Discovery of Periodic Patterns in Sequence Data: A Variance-Based Approach</title><author>Yang, Yinghui "Catherine" ; Padmanabhan, Balaji ; Liu, Hongyan ; Wang, Xiaoyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-24e196dfe2ee8ee192ec04d0f53f98c71039b6eb85926d55a297a68f2a6e0d7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>analysis of algorithms</topic><topic>Data mining</topic><topic>Forecasts and trends</topic><topic>Fraud</topic><topic>Fraud prevention</topic><topic>Heuristic</topic><topic>Information services</topic><topic>Information services industry</topic><topic>Methods</topic><topic>sequential patterns</topic><topic>Studies</topic><topic>variance reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yinghui "Catherine"</creatorcontrib><creatorcontrib>Padmanabhan, Balaji</creatorcontrib><creatorcontrib>Liu, Hongyan</creatorcontrib><creatorcontrib>Wang, Xiaoyu</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>ProQuest Computer Science Collection</collection><jtitle>INFORMS journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yinghui "Catherine"</au><au>Padmanabhan, Balaji</au><au>Liu, Hongyan</au><au>Wang, Xiaoyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovery of Periodic Patterns in Sequence Data: A Variance-Based Approach</atitle><jtitle>INFORMS journal on computing</jtitle><date>2012-06-22</date><risdate>2012</risdate><volume>24</volume><issue>3</issue><spage>372</spage><epage>386</epage><pages>372-386</pages><issn>1091-9856</issn><eissn>1526-5528</eissn><eissn>1091-9856</eissn><abstract>We address the discovery of periodic patterns in sequence data. Building on prior work in this area, we present definitions and new methods for characterizing and identifying four types of periodic patterns. A unifying concept across the different types of periodic patterns we consider is the use of statistical variance to define periodicity. This lends itself to efficient variance-reduction algorithms for identifying periodic patterns. We motivate and test our approach using both extensive simulated sequences and real sequence data from online clickstream data.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/ijoc.1110.0457</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1091-9856
ispartof INFORMS journal on computing, 2012-06, Vol.24 (3), p.372-386
issn 1091-9856
1526-5528
1091-9856
language eng
recordid cdi_gale_infotracmisc_A300343904
source INFORMS PubsOnLine; Business Source Complete
subjects Algorithms
analysis of algorithms
Data mining
Forecasts and trends
Fraud
Fraud prevention
Heuristic
Information services
Information services industry
Methods
sequential patterns
Studies
variance reduction
title Discovery of Periodic Patterns in Sequence Data: A Variance-Based Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T07%3A01%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovery%20of%20Periodic%20Patterns%20in%20Sequence%20Data:%20A%20Variance-Based%20Approach&rft.jtitle=INFORMS%20journal%20on%20computing&rft.au=Yang,%20Yinghui%20%22Catherine%22&rft.date=2012-06-22&rft.volume=24&rft.issue=3&rft.spage=372&rft.epage=386&rft.pages=372-386&rft.issn=1091-9856&rft.eissn=1526-5528&rft_id=info:doi/10.1287/ijoc.1110.0457&rft_dat=%3Cgale_proqu%3EA300343904%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1033786807&rft_id=info:pmid/&rft_galeid=A300343904&rfr_iscdi=true