Discovery of Periodic Patterns in Sequence Data: A Variance-Based Approach

We address the discovery of periodic patterns in sequence data. Building on prior work in this area, we present definitions and new methods for characterizing and identifying four types of periodic patterns. A unifying concept across the different types of periodic patterns we consider is the use of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:INFORMS journal on computing 2012-06, Vol.24 (3), p.372-386
Hauptverfasser: Yang, Yinghui "Catherine", Padmanabhan, Balaji, Liu, Hongyan, Wang, Xiaoyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We address the discovery of periodic patterns in sequence data. Building on prior work in this area, we present definitions and new methods for characterizing and identifying four types of periodic patterns. A unifying concept across the different types of periodic patterns we consider is the use of statistical variance to define periodicity. This lends itself to efficient variance-reduction algorithms for identifying periodic patterns. We motivate and test our approach using both extensive simulated sequences and real sequence data from online clickstream data.
ISSN:1091-9856
1526-5528
1091-9856
DOI:10.1287/ijoc.1110.0457