Estimating static tip resistance of driven piles with bottom pile instrumentation
A technique is presented to estimate static tip resistance of a pile during driving from embedded strain and accelerometer data located one diameter (D) from the bottom of the pile. The approach uses a nonlinear single degree of freedom system to satisfy force and energy equilibrium with a global ge...
Gespeichert in:
Veröffentlicht in: | Canadian geotechnical journal 2012-04, Vol.49 (4), p.381-393 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A technique is presented to estimate static tip resistance of a pile during driving from embedded strain and accelerometer data located one diameter (D) from the bottom of the pile. The approach uses a nonlinear single degree of freedom system to satisfy force and energy equilibrium with a global genetic inversion approach. By balancing force and energy from inertia, damping, and stiffness against the measured tip data, the unknown parameters (mass, damping, and nonlinear stiffness) are estimated. Requiring a few seconds for analysis for each blow, the algorithm ensures a real-time assessment of static tip resistance as a function of displacement, which is important when setting pile lengths. The proposed approach was applied to four test piles at two bridge sites (Florida and Louisiana). Mobilized static tip resistances ranging from 400 to 1500 kN as a function of displacement were predicted. The predicted static resistance versus displacements compared favorably with measured values from static load tests. Interestingly, the maximum recorded increase in tip resistance in silty to clayey sands was less than 20% when piles were re-struck at times ranging from 2 to 30 days after initial drive. |
---|---|
ISSN: | 0008-3674 1208-6010 |
DOI: | 10.1139/t2012-001 |