IMPROVED FORMULATION OF SCATTERING MATRICES FOR SEMI-ANALYTICAL METHODS THAT IS CONSISTENT WITH CONVENTION

The literature describing scattering matrices for semi-analytical methods almost exclusively contains inefficient formulations and formulations that deviate from long-standing convention in terms of how the scattering parameters are defined. This paper presents a novel and highly improved formulatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in electromagnetics research. Research B 2011-09, Vol.35, p.241-261
1. Verfasser: Rumpf, R.C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The literature describing scattering matrices for semi-analytical methods almost exclusively contains inefficient formulations and formulations that deviate from long-standing convention in terms of how the scattering parameters are defined. This paper presents a novel and highly improved formulation of scattering matrices that is consistent with convention, more efficient to implement, and more versatile than what has been otherwise presented in the literature. Semi-analytical methods represent a device as a stack of layers that are uniform in the longitudinal direction. Scattering matrices are calculated for each layer and are combined into a single overall scattering matrix that describes propagation through the entire device. Free space gaps with zero thickness are inserted between the layers and the scattering matrices are made to relate fields which exist outside of the layers, but directly on their boundaries. This framework produces symmetric scattering matrices so only two parameters need to be calculated and stored instead of four. It also enables the scattering matrices to be arbitrarily interchanged and reused to describe longitudinally periodic devices more efficiently. Numerical results are presented that show speed and efficiency can be increased by more than an order of magnitude using the improved formulation.
ISSN:1937-6472
1937-6472
DOI:10.2528/PIERB11083107