Efficient Risk Estimation via Nested Sequential Simulation

We analyze the computational problem of estimating financial risk in a nested simulation. In this approach, an outer simulation is used to generate financial scenarios, and an inner simulation is used to estimate future portfolio values in each scenario. We focus on one risk measure, the probability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Management science 2011-06, Vol.57 (6), p.1172-1194
Hauptverfasser: Broadie, Mark, Du, Yiping, Moallemi, Ciamac C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyze the computational problem of estimating financial risk in a nested simulation. In this approach, an outer simulation is used to generate financial scenarios, and an inner simulation is used to estimate future portfolio values in each scenario. We focus on one risk measure, the probability of a large loss, and we propose a new algorithm to estimate this risk. Our algorithm sequentially allocates computational effort in the inner simulation based on marginal changes in the risk estimator in each scenario. Theoretical results are given to show that the risk estimator has a faster convergence order compared to the conventional uniform inner sampling approach. Numerical results consistent with the theory are presented. This paper was accepted by Gérard Cachon, stochastic models and simulation.
ISSN:0025-1909
1526-5501
DOI:10.1287/mnsc.1110.1330