Pairwise [Ω.sup.]-closed sets and Ωp-closed sets in bitopological spaces

In this paper we introduce the concepts of pairwise [Ω.sup.*]-closed sets and Ωp-closed sets in bitopological spaces. Also we introduce and study pairwise [Ω.sup.*]-continuous functions and Ωp-continuous functions and prove pasting lemma for these functions. Moreover, we introduce new classes of bit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of pure & applied sciences. Sec. E, Mathematics & statistics Mathematics & statistics, 2008-01, Vol.27 (1), p.187
Hauptverfasser: Arockiarani, I, Mercy, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 187
container_title Bulletin of pure & applied sciences. Sec. E, Mathematics & statistics
container_volume 27
creator Arockiarani, I
Mercy, J
description In this paper we introduce the concepts of pairwise [Ω.sup.*]-closed sets and Ωp-closed sets in bitopological spaces. Also we introduce and study pairwise [Ω.sup.*]-continuous functions and Ωp-continuous functions and prove pasting lemma for these functions. Moreover, we introduce new classes of bitopological spaces called ([τ.sub.i], [τ.sub.j]) -[Ω.sup.*]-T1/2 and ([τ.sub.i], [τ.sub.j])-[Ω.sup.*]-Tp spaces and obtain their characterizations. Key words: ([τ.sub.i], [t.sub.j])-[Ω.sup.*]-closed, ([τ.sub.i], [τ.sub.j])-Ωp-closed, ([τ.sub.i], [τ.sub.j])-[Ω.sup.*]-continuity, ([τ.sub.i], [τ.sub.j])-Ωp-continuity, ([τ.sub.i], [τ.sub.j]) -[Ω.sup.*]-T1/2 space and ([τ.sub.i], [τ.sub.j])-[Ω.sup.*]-Tp.
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A199684947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A199684947</galeid><sourcerecordid>A199684947</sourcerecordid><originalsourceid>FETCH-LOGICAL-g677-bc5497a29940f48687153a653ead2ceddb2133e117b4ce553e486e4910d14cc3</originalsourceid><addsrcrecordid>eNptjE1qwzAQhbVooSHNHQRd21i25LGWIfSXQAvtrpQgj8ZGxbFMxqVnymVypgraRQudt3jw8b05E4vCQpHVBuBCrJjfi3QGykbDQjw8uXD4DEzy9XTM-WPK3zIcIpOXTDNLN3p5Ok5_WBhlG-Y4xSH2Ad0geXJIfCnOOzcwrX56KZ5vrl82d9n28fZ-s95mfQ2QtWi0BVdaq4tON3UDylSuNhU5XyJ535aqqkgpaDWSSTxJpK0qvNKI1VJcfX_t3UC7MHZxPjjcB8bdWllbN9pqSFb-j5XiaR8wjtSFxH8NvgCOolh2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Pairwise [Ω.sup.]-closed sets and Ωp-closed sets in bitopological spaces</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Arockiarani, I ; Mercy, J</creator><creatorcontrib>Arockiarani, I ; Mercy, J</creatorcontrib><description>In this paper we introduce the concepts of pairwise [Ω.sup.*]-closed sets and Ωp-closed sets in bitopological spaces. Also we introduce and study pairwise [Ω.sup.*]-continuous functions and Ωp-continuous functions and prove pasting lemma for these functions. Moreover, we introduce new classes of bitopological spaces called ([τ.sub.i], [τ.sub.j]) -[Ω.sup.*]-T1/2 and ([τ.sub.i], [τ.sub.j])-[Ω.sup.*]-Tp spaces and obtain their characterizations. Key words: ([τ.sub.i], [t.sub.j])-[Ω.sup.*]-closed, ([τ.sub.i], [τ.sub.j])-Ωp-closed, ([τ.sub.i], [τ.sub.j])-[Ω.sup.*]-continuity, ([τ.sub.i], [τ.sub.j])-Ωp-continuity, ([τ.sub.i], [τ.sub.j]) -[Ω.sup.*]-T1/2 space and ([τ.sub.i], [τ.sub.j])-[Ω.sup.*]-Tp.</description><identifier>ISSN: 0970-6577</identifier><language>eng</language><publisher>A.K. Sharma, Ed &amp; Pub</publisher><subject>Fuzzy sets ; Observations ; Properties ; Set theory ; Topological spaces</subject><ispartof>Bulletin of pure &amp; applied sciences. Sec. E, Mathematics &amp; statistics, 2008-01, Vol.27 (1), p.187</ispartof><rights>COPYRIGHT 2008 A.K. Sharma, Ed &amp; Pub</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782</link.rule.ids></links><search><creatorcontrib>Arockiarani, I</creatorcontrib><creatorcontrib>Mercy, J</creatorcontrib><title>Pairwise [Ω.sup.]-closed sets and Ωp-closed sets in bitopological spaces</title><title>Bulletin of pure &amp; applied sciences. Sec. E, Mathematics &amp; statistics</title><description>In this paper we introduce the concepts of pairwise [Ω.sup.*]-closed sets and Ωp-closed sets in bitopological spaces. Also we introduce and study pairwise [Ω.sup.*]-continuous functions and Ωp-continuous functions and prove pasting lemma for these functions. Moreover, we introduce new classes of bitopological spaces called ([τ.sub.i], [τ.sub.j]) -[Ω.sup.*]-T1/2 and ([τ.sub.i], [τ.sub.j])-[Ω.sup.*]-Tp spaces and obtain their characterizations. Key words: ([τ.sub.i], [t.sub.j])-[Ω.sup.*]-closed, ([τ.sub.i], [τ.sub.j])-Ωp-closed, ([τ.sub.i], [τ.sub.j])-[Ω.sup.*]-continuity, ([τ.sub.i], [τ.sub.j])-Ωp-continuity, ([τ.sub.i], [τ.sub.j]) -[Ω.sup.*]-T1/2 space and ([τ.sub.i], [τ.sub.j])-[Ω.sup.*]-Tp.</description><subject>Fuzzy sets</subject><subject>Observations</subject><subject>Properties</subject><subject>Set theory</subject><subject>Topological spaces</subject><issn>0970-6577</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNptjE1qwzAQhbVooSHNHQRd21i25LGWIfSXQAvtrpQgj8ZGxbFMxqVnymVypgraRQudt3jw8b05E4vCQpHVBuBCrJjfi3QGykbDQjw8uXD4DEzy9XTM-WPK3zIcIpOXTDNLN3p5Ok5_WBhlG-Y4xSH2Ad0geXJIfCnOOzcwrX56KZ5vrl82d9n28fZ-s95mfQ2QtWi0BVdaq4tON3UDylSuNhU5XyJ535aqqkgpaDWSSTxJpK0qvNKI1VJcfX_t3UC7MHZxPjjcB8bdWllbN9pqSFb-j5XiaR8wjtSFxH8NvgCOolh2</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Arockiarani, I</creator><creator>Mercy, J</creator><general>A.K. Sharma, Ed &amp; Pub</general><scope/></search><sort><creationdate>20080101</creationdate><title>Pairwise [Ω.sup.]-closed sets and Ωp-closed sets in bitopological spaces</title><author>Arockiarani, I ; Mercy, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g677-bc5497a29940f48687153a653ead2ceddb2133e117b4ce553e486e4910d14cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Fuzzy sets</topic><topic>Observations</topic><topic>Properties</topic><topic>Set theory</topic><topic>Topological spaces</topic><toplevel>online_resources</toplevel><creatorcontrib>Arockiarani, I</creatorcontrib><creatorcontrib>Mercy, J</creatorcontrib><jtitle>Bulletin of pure &amp; applied sciences. Sec. E, Mathematics &amp; statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arockiarani, I</au><au>Mercy, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pairwise [Ω.sup.]-closed sets and Ωp-closed sets in bitopological spaces</atitle><jtitle>Bulletin of pure &amp; applied sciences. Sec. E, Mathematics &amp; statistics</jtitle><date>2008-01-01</date><risdate>2008</risdate><volume>27</volume><issue>1</issue><spage>187</spage><pages>187-</pages><issn>0970-6577</issn><abstract>In this paper we introduce the concepts of pairwise [Ω.sup.*]-closed sets and Ωp-closed sets in bitopological spaces. Also we introduce and study pairwise [Ω.sup.*]-continuous functions and Ωp-continuous functions and prove pasting lemma for these functions. Moreover, we introduce new classes of bitopological spaces called ([τ.sub.i], [τ.sub.j]) -[Ω.sup.*]-T1/2 and ([τ.sub.i], [τ.sub.j])-[Ω.sup.*]-Tp spaces and obtain their characterizations. Key words: ([τ.sub.i], [t.sub.j])-[Ω.sup.*]-closed, ([τ.sub.i], [τ.sub.j])-Ωp-closed, ([τ.sub.i], [τ.sub.j])-[Ω.sup.*]-continuity, ([τ.sub.i], [τ.sub.j])-Ωp-continuity, ([τ.sub.i], [τ.sub.j]) -[Ω.sup.*]-T1/2 space and ([τ.sub.i], [τ.sub.j])-[Ω.sup.*]-Tp.</abstract><pub>A.K. Sharma, Ed &amp; Pub</pub></addata></record>
fulltext fulltext
identifier ISSN: 0970-6577
ispartof Bulletin of pure & applied sciences. Sec. E, Mathematics & statistics, 2008-01, Vol.27 (1), p.187
issn 0970-6577
language eng
recordid cdi_gale_infotracmisc_A199684947
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Fuzzy sets
Observations
Properties
Set theory
Topological spaces
title Pairwise [Ω.sup.]-closed sets and Ωp-closed sets in bitopological spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A35%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pairwise%20%5B%CE%A9.sup.%5D-closed%20sets%20and%20%CE%A9p-closed%20sets%20in%20bitopological%20spaces&rft.jtitle=Bulletin%20of%20pure%20&%20applied%20sciences.%20Sec.%20E,%20Mathematics%20&%20statistics&rft.au=Arockiarani,%20I&rft.date=2008-01-01&rft.volume=27&rft.issue=1&rft.spage=187&rft.pages=187-&rft.issn=0970-6577&rft_id=info:doi/&rft_dat=%3Cgale%3EA199684947%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A199684947&rfr_iscdi=true