Pairwise [Ω.sup.]-closed sets and Ωp-closed sets in bitopological spaces

In this paper we introduce the concepts of pairwise [Ω.sup.*]-closed sets and Ωp-closed sets in bitopological spaces. Also we introduce and study pairwise [Ω.sup.*]-continuous functions and Ωp-continuous functions and prove pasting lemma for these functions. Moreover, we introduce new classes of bit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of pure & applied sciences. Sec. E, Mathematics & statistics Mathematics & statistics, 2008-01, Vol.27 (1), p.187
Hauptverfasser: Arockiarani, I, Mercy, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we introduce the concepts of pairwise [Ω.sup.*]-closed sets and Ωp-closed sets in bitopological spaces. Also we introduce and study pairwise [Ω.sup.*]-continuous functions and Ωp-continuous functions and prove pasting lemma for these functions. Moreover, we introduce new classes of bitopological spaces called ([τ.sub.i], [τ.sub.j]) -[Ω.sup.*]-T1/2 and ([τ.sub.i], [τ.sub.j])-[Ω.sup.*]-Tp spaces and obtain their characterizations. Key words: ([τ.sub.i], [t.sub.j])-[Ω.sup.*]-closed, ([τ.sub.i], [τ.sub.j])-Ωp-closed, ([τ.sub.i], [τ.sub.j])-[Ω.sup.*]-continuity, ([τ.sub.i], [τ.sub.j])-Ωp-continuity, ([τ.sub.i], [τ.sub.j]) -[Ω.sup.*]-T1/2 space and ([τ.sub.i], [τ.sub.j])-[Ω.sup.*]-Tp.
ISSN:0970-6577