Roche/BIOTECON Diagnostics LightCycler foodproof L. monocytogenes detection kit in combination with ShortPrep foodproof II Kit. Performance-Tested Method 070401

A method was developed for the detection of L. monocytogenes in food based on real-time polymerase chain reaction (PCR). This advanced PCR method was designed to reduce the time needed to achieve results from PCR reactions and to enable the user to monitor the amplification of the PCR product simult...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of AOAC International 2006-03, Vol.89 (2), p.374
Hauptverfasser: Junge, Benjamin, Berghof-Jäger, Kornelia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A method was developed for the detection of L. monocytogenes in food based on real-time polymerase chain reaction (PCR). This advanced PCR method was designed to reduce the time needed to achieve results from PCR reactions and to enable the user to monitor the amplification of the PCR product simultaneously, in real-time. After DNA isolation using the Roche/BIOTECON Diagnostics ShortPrep foodproof II Kit (formerly called Listeria ShortPrep Kit) designed for the rapid preparation of L. monocytogenes DNA for direct use in PCR, the real-time detection of L. monocytogenes DNA is performed by using the Roche/BIOTECON Diagnostics LightCycler foodproof L. monocytogenes Detection Kit. This kit provides primers and hybridization probes for sequence-specific detection, convenient premixed reagents, and different controls for reliable interpretation of results. For repeatability studies, 20 different foods, covering the 15 food groups recommended from the AOAC Research Institute (AOAC RI) for L. monocytogenes detection were analyzed: raw meats, fresh produce/vegetables, processed meats, seafood, egg and egg products, dairy (cultured/noncultured), spices, dry foods, fruit/juices, uncooked pasta, nuts, confectionery, pet food, food dyes and colorings, and miscellaneous. From each food 20, samples were inoculated with a low level (1-10 colony-forming units (CFU)/25 g) and 20 samples with a high level (10-50 CFU/25 g) of L. monocytogenes. Additionally, 5 uninoculated samples were prepared from each food. The food samples were examined with the test kits and in correlation with the cultural methods according to U.S. Food and Drug Administration (FDA) Bacteriological Analytical Manual (BAM) or U.S. Department of Agriculture (USDA)/Food Safety and Inspection Service (FSIS) Microbiology Laboratory Guidebook. After 48 h of incubation, the PCR method in all cases showed equal or better results than the reference cultural FDA/BAM or USDA/FSIS methods. Fifteen out of 20 tested food types gave exactly the same amount of positive samples for both methods in both inoculation levels. For 5 out of 20 foodstuffs, the PCR method resulted in more positives than the reference method after 48 h of incubation. Following AOAC RI definition, these were false positives because they were not confirmed by the reference method (false-positive rate for low inoculated foodstuffs: 5.4%; for high inoculated foodstuffs: 7.1%). Without calculating these unconfirmed positives, the PCR method showed equ
ISSN:1060-3271