A Weak-to-Strong Convergence Principle for Fejér-Monotone Methods in Hilbert Spaces
We consider a wide class of iterative methods arising in numerical mathematics and optimization that are known to converge only weakly. Exploiting an idea originally proposed by Haugazeau, we present a simple modification of these methods that makes them strongly convergent without additional assump...
Gespeichert in:
Veröffentlicht in: | Mathematics of operations research 2001-05, Vol.26 (2), p.248-264 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 264 |
---|---|
container_issue | 2 |
container_start_page | 248 |
container_title | Mathematics of operations research |
container_volume | 26 |
creator | Bauschke, Heinz H. Combettes, Patrick L. |
description | We consider a wide class of iterative methods arising in numerical mathematics and optimization that are known to converge only weakly. Exploiting an idea originally proposed by Haugazeau, we present a simple modification of these methods that makes them strongly convergent without additional assumptions. Several applications are discussed. |
doi_str_mv | 10.1287/moor.26.2.248.10558 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracgeneralonefile_A78259060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A78259060</galeid><jstor_id>3690618</jstor_id><sourcerecordid>A78259060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-fcda616785741508f7f720d64281aba2fc89d8814b4f4d81aaa65cbea83543603</originalsourceid><addsrcrecordid>eNqNkc1uEzEUhUcIJELLE8DCYsUCT309_usyiiit1ArUFMHOcjx2mDCxU9tB8Eg8By-G04FFpS4qLyzd851jX52meQWkBarkyTbG1FLR0pYy1QLhXD1pZsCpwJxJeNrMSCcYloJ_fd68yHlDCHAJbNbczNEXZ77jEvGypBjWaBHDD5fWLliHPqUh2GE3OuRjQmdu8-d3wlcxxBKDQ1eufIt9RkNA58O4cqmg5c5Yl4-bZ96M2b38dx81n8_e3yzO8eXHDxeL-SW2HGjB3vZGgJCKSwacKC-9pKQXjCowK0O9Vae9UsBWzLO-zowR3K6cUR1nnSDdUfNmyt2leLt3uehN3KdQn9QUqFAADCr0boLWZnR6CD6WZGzdzyUz1jX8UMdzqSg_JXeZ-AG8nt5tB_sQ__YeX5Hifpa12eesL5bX99BuQm2KOSfn9S4NW5N-aSD60KM-9Kip0FTXHvVdj9X1enJtcqnqf0snaiYcZDrJh6-mbX5U5l8PgaoX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212681141</pqid></control><display><type>article</type><title>A Weak-to-Strong Convergence Principle for Fejér-Monotone Methods in Hilbert Spaces</title><source>INFORMS PubsOnLine</source><source>Business Source Complete</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Bauschke, Heinz H. ; Combettes, Patrick L.</creator><creatorcontrib>Bauschke, Heinz H. ; Combettes, Patrick L.</creatorcontrib><description>We consider a wide class of iterative methods arising in numerical mathematics and optimization that are known to converge only weakly. Exploiting an idea originally proposed by Haugazeau, we present a simple modification of these methods that makes them strongly convergent without additional assumptions. Several applications are discussed.</description><identifier>ISSN: 0364-765X</identifier><identifier>EISSN: 1526-5471</identifier><identifier>DOI: 10.1287/moor.26.2.248.10558</identifier><identifier>CODEN: MOREDQ</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Algorithms ; Approximation ; Convergence ; Convex feasibility ; Equilibrium theory ; Fejér-monotonicity ; firmly nonexpansive mapping ; fixed point ; Haugazeau ; Hilbert space ; Hilbert spaces ; Iterative methods ; Mathematical functions ; Mathematical monotonicity ; Mathematical sequences ; Mathematics ; maximal monotone operator ; Operations research ; Perceptron convergence procedure ; projection ; proximal point algorithm ; resolvent ; Studies ; subgradient algorithm</subject><ispartof>Mathematics of operations research, 2001-05, Vol.26 (2), p.248-264</ispartof><rights>Copyright 2001 Institute for Operations Research and the Management Sciences</rights><rights>COPYRIGHT 2001 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences May 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-fcda616785741508f7f720d64281aba2fc89d8814b4f4d81aaa65cbea83543603</citedby><cites>FETCH-LOGICAL-c512t-fcda616785741508f7f720d64281aba2fc89d8814b4f4d81aaa65cbea83543603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3690618$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/moor.26.2.248.10558$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,803,832,3692,27924,27925,58017,58021,58250,58254,62616</link.rule.ids></links><search><creatorcontrib>Bauschke, Heinz H.</creatorcontrib><creatorcontrib>Combettes, Patrick L.</creatorcontrib><title>A Weak-to-Strong Convergence Principle for Fejér-Monotone Methods in Hilbert Spaces</title><title>Mathematics of operations research</title><description>We consider a wide class of iterative methods arising in numerical mathematics and optimization that are known to converge only weakly. Exploiting an idea originally proposed by Haugazeau, we present a simple modification of these methods that makes them strongly convergent without additional assumptions. Several applications are discussed.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Convergence</subject><subject>Convex feasibility</subject><subject>Equilibrium theory</subject><subject>Fejér-monotonicity</subject><subject>firmly nonexpansive mapping</subject><subject>fixed point</subject><subject>Haugazeau</subject><subject>Hilbert space</subject><subject>Hilbert spaces</subject><subject>Iterative methods</subject><subject>Mathematical functions</subject><subject>Mathematical monotonicity</subject><subject>Mathematical sequences</subject><subject>Mathematics</subject><subject>maximal monotone operator</subject><subject>Operations research</subject><subject>Perceptron convergence procedure</subject><subject>projection</subject><subject>proximal point algorithm</subject><subject>resolvent</subject><subject>Studies</subject><subject>subgradient algorithm</subject><issn>0364-765X</issn><issn>1526-5471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkc1uEzEUhUcIJELLE8DCYsUCT309_usyiiit1ArUFMHOcjx2mDCxU9tB8Eg8By-G04FFpS4qLyzd851jX52meQWkBarkyTbG1FLR0pYy1QLhXD1pZsCpwJxJeNrMSCcYloJ_fd68yHlDCHAJbNbczNEXZ77jEvGypBjWaBHDD5fWLliHPqUh2GE3OuRjQmdu8-d3wlcxxBKDQ1eufIt9RkNA58O4cqmg5c5Yl4-bZ96M2b38dx81n8_e3yzO8eXHDxeL-SW2HGjB3vZGgJCKSwacKC-9pKQXjCowK0O9Vae9UsBWzLO-zowR3K6cUR1nnSDdUfNmyt2leLt3uehN3KdQn9QUqFAADCr0boLWZnR6CD6WZGzdzyUz1jX8UMdzqSg_JXeZ-AG8nt5tB_sQ__YeX5Hifpa12eesL5bX99BuQm2KOSfn9S4NW5N-aSD60KM-9Kip0FTXHvVdj9X1enJtcqnqf0snaiYcZDrJh6-mbX5U5l8PgaoX</recordid><startdate>20010501</startdate><enddate>20010501</enddate><creator>Bauschke, Heinz H.</creator><creator>Combettes, Patrick L.</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20010501</creationdate><title>A Weak-to-Strong Convergence Principle for Fejér-Monotone Methods in Hilbert Spaces</title><author>Bauschke, Heinz H. ; Combettes, Patrick L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-fcda616785741508f7f720d64281aba2fc89d8814b4f4d81aaa65cbea83543603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Convergence</topic><topic>Convex feasibility</topic><topic>Equilibrium theory</topic><topic>Fejér-monotonicity</topic><topic>firmly nonexpansive mapping</topic><topic>fixed point</topic><topic>Haugazeau</topic><topic>Hilbert space</topic><topic>Hilbert spaces</topic><topic>Iterative methods</topic><topic>Mathematical functions</topic><topic>Mathematical monotonicity</topic><topic>Mathematical sequences</topic><topic>Mathematics</topic><topic>maximal monotone operator</topic><topic>Operations research</topic><topic>Perceptron convergence procedure</topic><topic>projection</topic><topic>proximal point algorithm</topic><topic>resolvent</topic><topic>Studies</topic><topic>subgradient algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bauschke, Heinz H.</creatorcontrib><creatorcontrib>Combettes, Patrick L.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematics of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bauschke, Heinz H.</au><au>Combettes, Patrick L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Weak-to-Strong Convergence Principle for Fejér-Monotone Methods in Hilbert Spaces</atitle><jtitle>Mathematics of operations research</jtitle><date>2001-05-01</date><risdate>2001</risdate><volume>26</volume><issue>2</issue><spage>248</spage><epage>264</epage><pages>248-264</pages><issn>0364-765X</issn><eissn>1526-5471</eissn><coden>MOREDQ</coden><abstract>We consider a wide class of iterative methods arising in numerical mathematics and optimization that are known to converge only weakly. Exploiting an idea originally proposed by Haugazeau, we present a simple modification of these methods that makes them strongly convergent without additional assumptions. Several applications are discussed.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/moor.26.2.248.10558</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-765X |
ispartof | Mathematics of operations research, 2001-05, Vol.26 (2), p.248-264 |
issn | 0364-765X 1526-5471 |
language | eng |
recordid | cdi_gale_infotracgeneralonefile_A78259060 |
source | INFORMS PubsOnLine; Business Source Complete; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Algorithms Approximation Convergence Convex feasibility Equilibrium theory Fejér-monotonicity firmly nonexpansive mapping fixed point Haugazeau Hilbert space Hilbert spaces Iterative methods Mathematical functions Mathematical monotonicity Mathematical sequences Mathematics maximal monotone operator Operations research Perceptron convergence procedure projection proximal point algorithm resolvent Studies subgradient algorithm |
title | A Weak-to-Strong Convergence Principle for Fejér-Monotone Methods in Hilbert Spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A26%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Weak-to-Strong%20Convergence%20Principle%20for%20Fej%C3%A9r-Monotone%20Methods%20in%20Hilbert%20Spaces&rft.jtitle=Mathematics%20of%20operations%20research&rft.au=Bauschke,%20Heinz%20H.&rft.date=2001-05-01&rft.volume=26&rft.issue=2&rft.spage=248&rft.epage=264&rft.pages=248-264&rft.issn=0364-765X&rft.eissn=1526-5471&rft.coden=MOREDQ&rft_id=info:doi/10.1287/moor.26.2.248.10558&rft_dat=%3Cgale_cross%3EA78259060%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212681141&rft_id=info:pmid/&rft_galeid=A78259060&rft_jstor_id=3690618&rfr_iscdi=true |