A Weak-to-Strong Convergence Principle for Fejér-Monotone Methods in Hilbert Spaces

We consider a wide class of iterative methods arising in numerical mathematics and optimization that are known to converge only weakly. Exploiting an idea originally proposed by Haugazeau, we present a simple modification of these methods that makes them strongly convergent without additional assump...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of operations research 2001-05, Vol.26 (2), p.248-264
Hauptverfasser: Bauschke, Heinz H., Combettes, Patrick L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a wide class of iterative methods arising in numerical mathematics and optimization that are known to converge only weakly. Exploiting an idea originally proposed by Haugazeau, we present a simple modification of these methods that makes them strongly convergent without additional assumptions. Several applications are discussed.
ISSN:0364-765X
1526-5471
DOI:10.1287/moor.26.2.248.10558