[sup.92]Nb-[sup.92]Zr and the Early Differentiation History of Planetary Bodies

The niobium-92-zirconium-92 ([sup.92]Nb-[sup.92]Zr) extinct radioactive decay system (half-life of about 36 million years) can place new time constraints on early differentiation processes in the silicate portion of planets and meteorites. Zirconium isotope data show that Earth and the oldest lunar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2000-09, Vol.289 (5484), p.1538-1538
Hauptverfasser: Munker, C, Weyer, S, Mezger, K, Rehkamper, M, Wombacher, F, Bischoff, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The niobium-92-zirconium-92 ([sup.92]Nb-[sup.92]Zr) extinct radioactive decay system (half-life of about 36 million years) can place new time constraints on early differentiation processes in the silicate portion of planets and meteorites. Zirconium isotope data show that Earth and the oldest lunar crust have the same relative abundances of [sup.92]Zr as chondrites. [sup.92]Zr deficits in calcium-aluminum-rich inclusions from the Allende meteorite constrain the minimum value for the initial [sup.92]Nb/[sup.93]Nb ratio of the solar system to 0.001. The absence of [sup.92]Zr anomalies in terrestrial and lunar samples indicates that large silicate reservoirs on Earth and the moon (such as a magma ocean residue, a depleted mantle, or a crust) formed more than 50 million years after the oldest meteorites formed.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.289.5484.1538