Superconducting qubit to optical photon transduction
Conversion of electrical and optical signals lies at the foundation of the global internet. Such converters are used to extend the reach of long-haul fibre-optic communication systems and within data centres for high-speed optical networking of computers. Likewise, coherent microwave-to-optical conv...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2020-12, Vol.588 (7839), p.599-603 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 603 |
---|---|
container_issue | 7839 |
container_start_page | 599 |
container_title | Nature (London) |
container_volume | 588 |
creator | Mirhosseini, Mohammad Sipahigil, Alp Kalaee, Mahmoud Painter, Oskar |
description | Conversion of electrical and optical signals lies at the foundation of the global internet. Such converters are used to extend the reach of long-haul fibre-optic communication systems and within data centres for high-speed optical networking of computers. Likewise, coherent microwave-to-optical conversion of single photons would enable the exchange of quantum states between remotely connected superconducting quantum processors
1
. Despite the prospects of quantum networking
2
, maintaining the fragile quantum state in such a conversion process with superconducting qubits has not yet been achieved. Here we demonstrate the conversion of a microwave-frequency excitation of a transmon—a type of superconducting qubit—into an optical photon. We achieve this by using an intermediary nanomechanical resonator that converts the electrical excitation of the qubit into a single phonon by means of a piezoelectric interaction
3
and subsequently converts the phonon to an optical photon by means of radiation pressure
4
. We demonstrate optical photon generation from the qubit by recording quantum Rabi oscillations of the qubit through single-photon detection of the emitted light over an optical fibre. With proposed improvements in the device and external measurement set-up, such quantum transducers might be used to realize new hybrid quantum networks
2
,
5
and, ultimately, distributed quantum computers
6
,
7
.
A chip-scale platform is developed for the conversion of a single microwave excitation of a superconducting qubit into optical photons, with potential uses in quantum computer networks. |
doi_str_mv | 10.1038/s41586-020-3038-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_infotracgeneralonefile_A649646062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A649646062</galeid><sourcerecordid>A649646062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c640t-f9e5ff6c4da8d85bbe5fb584dab68ec17dcb6c18d4987553a0ec9128f4cfe5d3</originalsourceid><addsrcrecordid>eNp10l1v0zAUBmALMbEy-AHcoAhuQMjDjj_iXFYVH5OmIbFKXFqOYwdPqZ3ajgT_HpdujE6dfBEd5zlHTvwC8Aqjc4yI-JgoZoJDVCNISg35E7DAtOGQctE8BQuEagGRIPwUPE_pBiHEcEOfgVNCCMdNSxaAXs-TiTr4ftbZ-aHazp3LVQ5VmLLTaqymnyEHX-WofPqLgn8BTqwak3l5-zwD68-f1quv8PLbl4vV8hJqTlGGtjXMWq5pr0QvWNeVsmOilB0XRuOm1x3XWPS0FQ1jRCGjW1wLS7U1rCdn4N1-7BTDdjYpy41L2oyj8ibMSda0IRRj0eBC3z6gN2GOvhxupzivESPiXg1qNNJ5G8pX6d1QueS05ZQjXhcFj6jBeBPVGLyxrmwf-DdHvJ7cVv6Pzo-gsnqzcfro1PcHDcVk8ysPak5JXlx_P7QfHrfL9Y_V1aHGe61jSCkaK6foNir-lhjJXa7kPley5EruciV56Xl9-3_nbmP6fx13QSqg3oNUXvnBxPsLeHzqH3Ji01g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476620538</pqid></control><display><type>article</type><title>Superconducting qubit to optical photon transduction</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Mirhosseini, Mohammad ; Sipahigil, Alp ; Kalaee, Mahmoud ; Painter, Oskar</creator><creatorcontrib>Mirhosseini, Mohammad ; Sipahigil, Alp ; Kalaee, Mahmoud ; Painter, Oskar</creatorcontrib><description>Conversion of electrical and optical signals lies at the foundation of the global internet. Such converters are used to extend the reach of long-haul fibre-optic communication systems and within data centres for high-speed optical networking of computers. Likewise, coherent microwave-to-optical conversion of single photons would enable the exchange of quantum states between remotely connected superconducting quantum processors
1
. Despite the prospects of quantum networking
2
, maintaining the fragile quantum state in such a conversion process with superconducting qubits has not yet been achieved. Here we demonstrate the conversion of a microwave-frequency excitation of a transmon—a type of superconducting qubit—into an optical photon. We achieve this by using an intermediary nanomechanical resonator that converts the electrical excitation of the qubit into a single phonon by means of a piezoelectric interaction
3
and subsequently converts the phonon to an optical photon by means of radiation pressure
4
. We demonstrate optical photon generation from the qubit by recording quantum Rabi oscillations of the qubit through single-photon detection of the emitted light over an optical fibre. With proposed improvements in the device and external measurement set-up, such quantum transducers might be used to realize new hybrid quantum networks
2
,
5
and, ultimately, distributed quantum computers
6
,
7
.
A chip-scale platform is developed for the conversion of a single microwave excitation of a superconducting qubit into optical photons, with potential uses in quantum computer networks.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-3038-6</identifier><identifier>PMID: 33361793</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/483/2802 ; 639/766/483/3925 ; 639/925/927/1064 ; Acoustics ; Analysis ; Atomic properties ; Communications systems ; Computers ; Conversion ; Converters ; Data centers ; Equipment and supplies ; Excitation ; Fiber optics ; Humanities and Social Sciences ; Lasers ; Materials ; multidisciplinary ; Noise ; Optical communication ; Optical fibers ; Optical properties ; Oscillations ; Phonons ; Photons ; Piezoelectricity ; Quantum computing ; Qubits (quantum computing) ; Radiation ; Radiation pressure ; Science ; Science (multidisciplinary) ; Silicon ; Superconductive devices ; Superconductivity ; Transducers</subject><ispartof>Nature (London), 2020-12, Vol.588 (7839), p.599-603</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 24-Dec 31, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c640t-f9e5ff6c4da8d85bbe5fb584dab68ec17dcb6c18d4987553a0ec9128f4cfe5d3</citedby><cites>FETCH-LOGICAL-c640t-f9e5ff6c4da8d85bbe5fb584dab68ec17dcb6c18d4987553a0ec9128f4cfe5d3</cites><orcidid>0000-0002-1581-9209 ; 0000-0003-1469-5272</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-020-3038-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-020-3038-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33361793$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mirhosseini, Mohammad</creatorcontrib><creatorcontrib>Sipahigil, Alp</creatorcontrib><creatorcontrib>Kalaee, Mahmoud</creatorcontrib><creatorcontrib>Painter, Oskar</creatorcontrib><title>Superconducting qubit to optical photon transduction</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Conversion of electrical and optical signals lies at the foundation of the global internet. Such converters are used to extend the reach of long-haul fibre-optic communication systems and within data centres for high-speed optical networking of computers. Likewise, coherent microwave-to-optical conversion of single photons would enable the exchange of quantum states between remotely connected superconducting quantum processors
1
. Despite the prospects of quantum networking
2
, maintaining the fragile quantum state in such a conversion process with superconducting qubits has not yet been achieved. Here we demonstrate the conversion of a microwave-frequency excitation of a transmon—a type of superconducting qubit—into an optical photon. We achieve this by using an intermediary nanomechanical resonator that converts the electrical excitation of the qubit into a single phonon by means of a piezoelectric interaction
3
and subsequently converts the phonon to an optical photon by means of radiation pressure
4
. We demonstrate optical photon generation from the qubit by recording quantum Rabi oscillations of the qubit through single-photon detection of the emitted light over an optical fibre. With proposed improvements in the device and external measurement set-up, such quantum transducers might be used to realize new hybrid quantum networks
2
,
5
and, ultimately, distributed quantum computers
6
,
7
.
A chip-scale platform is developed for the conversion of a single microwave excitation of a superconducting qubit into optical photons, with potential uses in quantum computer networks.</description><subject>639/766/483/2802</subject><subject>639/766/483/3925</subject><subject>639/925/927/1064</subject><subject>Acoustics</subject><subject>Analysis</subject><subject>Atomic properties</subject><subject>Communications systems</subject><subject>Computers</subject><subject>Conversion</subject><subject>Converters</subject><subject>Data centers</subject><subject>Equipment and supplies</subject><subject>Excitation</subject><subject>Fiber optics</subject><subject>Humanities and Social Sciences</subject><subject>Lasers</subject><subject>Materials</subject><subject>multidisciplinary</subject><subject>Noise</subject><subject>Optical communication</subject><subject>Optical fibers</subject><subject>Optical properties</subject><subject>Oscillations</subject><subject>Phonons</subject><subject>Photons</subject><subject>Piezoelectricity</subject><subject>Quantum computing</subject><subject>Qubits (quantum computing)</subject><subject>Radiation</subject><subject>Radiation pressure</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Silicon</subject><subject>Superconductive devices</subject><subject>Superconductivity</subject><subject>Transducers</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10l1v0zAUBmALMbEy-AHcoAhuQMjDjj_iXFYVH5OmIbFKXFqOYwdPqZ3ajgT_HpdujE6dfBEd5zlHTvwC8Aqjc4yI-JgoZoJDVCNISg35E7DAtOGQctE8BQuEagGRIPwUPE_pBiHEcEOfgVNCCMdNSxaAXs-TiTr4ftbZ-aHazp3LVQ5VmLLTaqymnyEHX-WofPqLgn8BTqwak3l5-zwD68-f1quv8PLbl4vV8hJqTlGGtjXMWq5pr0QvWNeVsmOilB0XRuOm1x3XWPS0FQ1jRCGjW1wLS7U1rCdn4N1-7BTDdjYpy41L2oyj8ibMSda0IRRj0eBC3z6gN2GOvhxupzivESPiXg1qNNJ5G8pX6d1QueS05ZQjXhcFj6jBeBPVGLyxrmwf-DdHvJ7cVv6Pzo-gsnqzcfro1PcHDcVk8ysPak5JXlx_P7QfHrfL9Y_V1aHGe61jSCkaK6foNir-lhjJXa7kPley5EruciV56Xl9-3_nbmP6fx13QSqg3oNUXvnBxPsLeHzqH3Ji01g</recordid><startdate>20201224</startdate><enddate>20201224</enddate><creator>Mirhosseini, Mohammad</creator><creator>Sipahigil, Alp</creator><creator>Kalaee, Mahmoud</creator><creator>Painter, Oskar</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1581-9209</orcidid><orcidid>https://orcid.org/0000-0003-1469-5272</orcidid></search><sort><creationdate>20201224</creationdate><title>Superconducting qubit to optical photon transduction</title><author>Mirhosseini, Mohammad ; Sipahigil, Alp ; Kalaee, Mahmoud ; Painter, Oskar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c640t-f9e5ff6c4da8d85bbe5fb584dab68ec17dcb6c18d4987553a0ec9128f4cfe5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/766/483/2802</topic><topic>639/766/483/3925</topic><topic>639/925/927/1064</topic><topic>Acoustics</topic><topic>Analysis</topic><topic>Atomic properties</topic><topic>Communications systems</topic><topic>Computers</topic><topic>Conversion</topic><topic>Converters</topic><topic>Data centers</topic><topic>Equipment and supplies</topic><topic>Excitation</topic><topic>Fiber optics</topic><topic>Humanities and Social Sciences</topic><topic>Lasers</topic><topic>Materials</topic><topic>multidisciplinary</topic><topic>Noise</topic><topic>Optical communication</topic><topic>Optical fibers</topic><topic>Optical properties</topic><topic>Oscillations</topic><topic>Phonons</topic><topic>Photons</topic><topic>Piezoelectricity</topic><topic>Quantum computing</topic><topic>Qubits (quantum computing)</topic><topic>Radiation</topic><topic>Radiation pressure</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Silicon</topic><topic>Superconductive devices</topic><topic>Superconductivity</topic><topic>Transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mirhosseini, Mohammad</creatorcontrib><creatorcontrib>Sipahigil, Alp</creatorcontrib><creatorcontrib>Kalaee, Mahmoud</creatorcontrib><creatorcontrib>Painter, Oskar</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mirhosseini, Mohammad</au><au>Sipahigil, Alp</au><au>Kalaee, Mahmoud</au><au>Painter, Oskar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superconducting qubit to optical photon transduction</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2020-12-24</date><risdate>2020</risdate><volume>588</volume><issue>7839</issue><spage>599</spage><epage>603</epage><pages>599-603</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Conversion of electrical and optical signals lies at the foundation of the global internet. Such converters are used to extend the reach of long-haul fibre-optic communication systems and within data centres for high-speed optical networking of computers. Likewise, coherent microwave-to-optical conversion of single photons would enable the exchange of quantum states between remotely connected superconducting quantum processors
1
. Despite the prospects of quantum networking
2
, maintaining the fragile quantum state in such a conversion process with superconducting qubits has not yet been achieved. Here we demonstrate the conversion of a microwave-frequency excitation of a transmon—a type of superconducting qubit—into an optical photon. We achieve this by using an intermediary nanomechanical resonator that converts the electrical excitation of the qubit into a single phonon by means of a piezoelectric interaction
3
and subsequently converts the phonon to an optical photon by means of radiation pressure
4
. We demonstrate optical photon generation from the qubit by recording quantum Rabi oscillations of the qubit through single-photon detection of the emitted light over an optical fibre. With proposed improvements in the device and external measurement set-up, such quantum transducers might be used to realize new hybrid quantum networks
2
,
5
and, ultimately, distributed quantum computers
6
,
7
.
A chip-scale platform is developed for the conversion of a single microwave excitation of a superconducting qubit into optical photons, with potential uses in quantum computer networks.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33361793</pmid><doi>10.1038/s41586-020-3038-6</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-1581-9209</orcidid><orcidid>https://orcid.org/0000-0003-1469-5272</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2020-12, Vol.588 (7839), p.599-603 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_gale_infotracgeneralonefile_A649646062 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 639/766/483/2802 639/766/483/3925 639/925/927/1064 Acoustics Analysis Atomic properties Communications systems Computers Conversion Converters Data centers Equipment and supplies Excitation Fiber optics Humanities and Social Sciences Lasers Materials multidisciplinary Noise Optical communication Optical fibers Optical properties Oscillations Phonons Photons Piezoelectricity Quantum computing Qubits (quantum computing) Radiation Radiation pressure Science Science (multidisciplinary) Silicon Superconductive devices Superconductivity Transducers |
title | Superconducting qubit to optical photon transduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A01%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superconducting%20qubit%20to%20optical%20photon%20transduction&rft.jtitle=Nature%20(London)&rft.au=Mirhosseini,%20Mohammad&rft.date=2020-12-24&rft.volume=588&rft.issue=7839&rft.spage=599&rft.epage=603&rft.pages=599-603&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-3038-6&rft_dat=%3Cgale_proqu%3EA649646062%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476620538&rft_id=info:pmid/33361793&rft_galeid=A649646062&rfr_iscdi=true |